.} CHALMERS

= ,,gf UNIVERSITY OF TECHNOLOGY
v o

Development of a Multidisciplinary
Design Optimization Process for
Automotive Components

Metamodel-Based Optimization of a Center Stack Display Bracket

Master’s Thesis in Product Development

PHILIP BLOM
FELIX SODERLIND ENGLUND

Department of Industrial and Material Science

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021

MASTER’S THESIS 2021

Development of a Multidisciplinary Design
Optimization Process for Automotive
Components

Metamodel-Based Optimization of a Center Stack Display Bracket

PHILIP BLOM
FELIX SODERLIND ENGLUND

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Industrial and Material Science
Division of Product Development
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021

Development of a Multidisciplinary Design Optimization Process for Automotive
Components

Metamodel-Based Optimization of a Center Stack Display Bracket

PHILIP BLOM

FELIX SODERLIND ENGLUND

© PHILIP BLOM & FELIX SODERLIND ENGLUND, 2021.

Industrial supervisor: Halil Salifov, Volvo Car Corporation
Supervisor: Kanishk Bhadani, Department of Industrial and Material Science
Examiner: Gauti Asbjornsson, Department of Industrial and Material Science

Master’s Thesis 2021

Department of Industrial and Material Science
Division of Product Development

Chalmers University of Technology

SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: Collage of (from the left) MOGA-II scatter plot, Center Stack Display CAD
model, and metamodel surface.

Typeset in BKTEX
Printed by Chalmers Reproservice

Gothenburg, Sweden 2021

v

Abstract

The design of automotive components requires balancing requirements from mul-
tiple engineering disciplines to arrive at a satisfactory design in increasingly short
development cycles. Multidisciplinary Design Optimization (MDO) can facilitate
learning and discovery of high-performing designs with conflicting requirements in
a time-efficient manner.

This thesis presents an MDO process for interior structural components subject
to crash and noise, vibration, and harshness (NVH) requirements. Internal needs
at Volvo Car Corporation for such a method are identified using semi-structured
interviews. Relying on previous findings in the field of metamodel-based MDO, a
sizing optimization workflow is developed in the software modeFRONTIER using
a simple geometry subject to a head impact load case and a modal requirement.
The presented process involves variable selection by parameterization and statisti-
cal variable screening, sampling using an experimental Uniform Latin Hypercube
design, metamodeling with multiple metamodel algorithms, and subsequent global,
nongradient optimization with the genetic algorithm MOGA-II.

The MDO process is applied to a Center Stack Display bracket design problem
subject to three head impact load cases and an NVH-related modal requirement.
Significant performance increases for critical objectives are shown compared to a
pre-optimized design; however, the optimization does not reach all performance tar-
gets, thus prompting a discussion about process limitations, including the need for
global information and implications of geometry lock-in. Organizational, societal,
ethical, and ecological aspects related to MDO in the automotive industry are briefly
considered. Finally, recommendations regarding future work are given, including the
implementation of finite element mesh morphing to allow for more complex design
variables and method improvements for variable screening.

Keywords: Multidisciplinary Design Optimization, Variable Screening, Metamodel-
Based Optimization, Design of Experiments, Latin Hypercube Sampling

Acknowledgements

This work could not have been possible without the support of several people who
kindly offered their time during the duration of our thesis. First of all, we would
like to thank our supervisor, Kanishk Bhadani, for his continuous engagement and
valuable guidance throughout the entire duration of the thesis. We would also like
to thank our thesis examiner Gauti Asbjornsson. His mentoring and academic input
kept us on the right track during crucial stages of the project.

We want to express our gratitude to Halil Salifov, our Volvo Car Corporation super-
visor, for his assistance, continuous support, and for providing the proper prerequi-
sites for us to succeed. Moreover, we would like to thank Stefan Pauli at VCC for
his kindness in spending many hours teaching and aiding us with the CAE software
stack.

Furthermore, we would like to thank all the CAE experts, needs assessment intervie-
wees, and other engineers at Volvo Car Corporation for their input and engagement
in our work. We want to thank Harald Hasselblad for his nuanced reflections, which
helped form our views of the organizational considerations concerning the imple-
mentation of Multidisciplinary Design Optimization in the automotive industry. We
also thank Alexander Govik for his guidance in modeFRONTIER during the initial
stages of the work.

Lastly, we would like to express our gratitude to our family and friends for their
support and encouragement during the duration of our thesis.

Philip Blom & Felix Soéderlind Englund, Gothenburg, June 2021

vii

Table of Contents

1 Introduction

3

1.1

1.2
1.3
1.4
1.5

Background

1.1.1 Volvo Car Corporation
1.1.2 Optimization in the Product Development Process.
1.1.3 Multidisciplinary Design Optimization
1.1.4 Center Stack Display Bracket Requirement Conflict

Purpose and Aim . .
Limitations
Research Questions .
Thesis Outline

Theory
2.1 Modal and Crash Analysis
2.1.1 Modal Analysis

2.2

2.3
24

2.5

2.6

2.1.2 Crash Analysis

Introduction to Design Optimization
2.2.1 Optimization Algorithms
2.2.2 Multi-Objective Optimization

Statistical Theory . .
Design of Experiments

2.4.1 Experimental Design for Screening
2.4.2 Experimental Design for Modeling

Metamodels

2.5.1 Polynomial Regression
2.5.2 Radial Basis Functions

2.5.3 Kriging . . .
2.5.4 Performance In

dices for Metamodels

Multidisciplinary Design Optimization
2.6.1 Terminology and General Formulation

2.6.2 Architectures

Methodology

3.1
3.2
3.3
3.4

Literature Study . .
Needs Assessment . .
Software Selection . .
Process Development

27
27
27
28
29

ix

Table of Contents

3.5 Process Implementation on CSDB . .
3.6 Final Recommendations

4 Process Development
4.1 Needs Assessment Findings
4.1.1 Current Practice
4.1.2 Software
4.1.3 Optimization Maturity

4.1.4 Hindrances of an MDO Process

4.1.5 Desirable Features of an MDO Process
4.2 Process Implementation in modeFRONTIER

4.3 Development Problem
4.4 Proposed Process
4.4.1 Problem Formulation
4.4.2 Variable Selection
4.4.3 Metamodeling

4.4.4 Metamodel-Based Optimization

4.4.5 Validation at Optima
4.4.6 CAD Interpretation

5 Process Verification on an Automotive Component

5.1 Problem Formulation
5.2 Variable Selection
5.3 Metamodeling
5.4 Metamodel-Based Optimization . . .
5.5 Optimization Infeasibility
5.6 Second Multi-Objective Optimization
5.7 CAD Interpretation

6 Discussion
6.1 Organizational Considerations
6.2 Sustainability Considerations
6.3 Method Limitations
6.4 Future Work

7 Conclusion
References
A Appendix - Software Implementation

B Appendix - Script Code

31
31
31
32
32
32
33
33
35
36
38
38
42
44
45
46

49
49
o1
52
53
95
o6
60

61
61
62
63
64

67

69

II1

Notation

AAO
ASO
ATC
BLISS
CAD
CAE
CFD
CO
CSD
CSDB
CSSO
DG
DoE
DV
ECO
EPD
FEM
GA
IDF
IP
IPD
LHS
LP
MAE
MAUD
MDA
MDF
MDO
MDOIS
MOGA
MOO
MRE
NLP
NVH
P-B
QSD
RBF
SAND
SO0
SSANOVA
ULH
VCC
XDSM

All-at-once

Asymmetric subspace optimization
Analytical target cascading

Bilevel integrated system synthesis
Computer-aided design
Computer-aided engineering
Computational fluid dynamics
Collaborative optimization

Center stack display

Center stack display bracket
Concurrent subspace optimization
Development geometry

Design of experiments

Design variable

Enhanced collaborative optimization
Exact penalty decomposition

Finite element method

Genetic algorithm

Individual discipline feasible
Instrument panel

Inexact penalty decomposition
Latin hypercube sampling

Linear programming

Mean absolute error

Modular analysis and unified derivatives
Multidisciplinary analysis
Multidisciplinary feasible
Multidisciplinary design optimization
Multidisciplinary design optimization of independent subspaces
Multi-objective genetic algorithm
Multi-objective optimization

Mean relative error

Nonlinear programming

Noise, vibration, and harshness
Plackett-Burman

Quasi-separable decomposition
Radial basis function

Simultaneous analysis and design
Single-objective optimization
Smoothing spline analysis of variance
Uniform latin hypercube

Volvo Car Corporation

Extended design structure matrix

X1

1

Introduction

The Master’s Thesis is carried out at Volvo Car Corporation (VCC) with guidance
from the Department of Industrial and Material Science, Chalmers University of
Technology. This chapter covers a brief background to contextualize the work.
Furthermore, the chapter presents the purpose and aim, scope, limitations, and
research questions. The final section in the chapter describes the structure of the
thesis report in outline.

1.1 Background

A brief company background is presented in addition to an introduction to optimiza-
tion in product development. Subsequently, multidisciplinary design optimization
and the verification design problem are introduced.

1.1.1 Volvo Car Corporation

Volvo Car Corporation (VCC) is an automobile manufacturer founded in 1927 in
Gothenburg, Sweden. Initially owned by AB Svenska Kullagerfabriken (SKF) as
a subsidiary company, it is under the ownership of Zhejiang Geely Holding as of
2010. VCC is a company with a global footprint employing around 40,000 full-
time employees as of December 2020. Its head office with product development
and supporting functions is located in Gothenburg, Sweden. Manufacturing and
assembly are likewise located in Sweden but also in Belgium, Malaysia, India, China,
and the US [1]. Focusing on premium-segment car models of sedans, versatile estates,
and SUVs, Volvo Cars has in 2020 sold 661,713 cars and reports annual revenues of
262,833 MSEK [2].

1.1.2 Optimization in the Product Development Process

As software capabilities are continuously improving, companies can bridge the gap
between physical and virtual testing, enabling computer-aided engineering (CAE)
methods and tools to drive the product development process. Ulrich and Eppinger
[3] describe the traditional product development process as depicted in Figure 1.1.
The figure shows the phase of interest for this thesis.

1. Introduction

Traditional Product Development Process

y A
Product Concept System-Level et Bl Testing and Production
Planning Development Design 8! Refinement Ramp-Up
K Area of interest)

Figure 1.1: A traditional product development process [3] with the phases of
interest marked.

Compared to the traditional product development approach of having engineers de-
velop hardware for testing, a CAE-driven product development process allows for
the integration of, e.g., structural optimization procedures such as size-, shape-, and
topology optimization. However, depending on when in the product development
process CAE is implemented, the prerequisites may differ. While there typically are
fewer restrictions on the design space early on in the product development process,
simplified load cases are often required, imposing limitations on the accuracy of
optimization results. On the other hand, CAE in the later stages of the product de-
velopment process allows for optimization using a more established design space and
well-defined load cases. However, with a detailed component, the design space gets
narrower, complicating the CAE’s implementation to yield significant improvement.
In this work, the use of size optimization is investigated to fine-tune a component
in the later stages of the product development process.

1.1.3 Multidisciplinary Design Optimization

Global competition, regulatory pressures, and ambitious visions by companies con-
tribute to increased demands on automotive engineering teams to create complex
structural systems, often with conflicting requirements. The development effort of
automotive components typically involves several disciplines, e.g., noise, vibration,
and harshness (NVH), crashworthiness, durability, and solidity. Multidisciplinary
Design Optimization (MDQO) aims to coordinate these disciplines effectively to ar-
rive at a design that considers the interactions between disciplines, preferably by
exploiting synergism [4], to arrive at a significantly improved, if not optimal, design.
Although MDO simultaneously considers several disciplines with some degree of au-
tomation, MDO may be best viewed as a tool that helps engineers explore a given
design space. It should be interpreted as such, as opposed to an automated process
that arrives at a complete design without human intervention [5], [6]. Not all knowl-
edge can be made explicit and included in a set of models, nor is the interpretation
of the results without ambiguity, which is why interactions between engineers and
the MDO process as a tool are essential.

MDO was initially developed in the literature on structural optimization during
the early 1970s. After seminal work utilizing Nonlinear Programming (NLP) [7],
MDO concepts were applied in aerospace applications with mass reduction being
the primary focus [8]. More recently, MDO has seen use in the automotive sector,
which differs in engineering focus to aerospace, the former focusing primarily on
crashworthiness and the latter focusing on fatigue with considerable elastic behav-

1. Introduction

ior (e.g., in the wings of an airplane) [6], [9]. In general, methods cannot be readily
transferred from one industry to another or from one type of engineering problem to
another because the particular disciplines and their interrelationships require differ-
ent MDO approaches. Therefore, a study is needed before choosing or synthesizing
a method for a particular application type.

1.1.4 Center Stack Display Bracket Requirement Conflict

During the development of an MDO process, a simplified geometry is used. However,
a real design problem with conflicting requirements is used to verify the approach.
The developed process is verified using the Center Stack Display Bracket (CSDB),
which is an interior component of the car belonging to the Instrument Panel (IP),
see Figure 1.2.

All car parts depicted are from a commercially available car model.

Figure 1.2: CAD model of a recent VCC car model. Note the CSD in the center.

To implement a Center Stack Display (CSD), as shown in Figure 1.3, multiple dis-
ciplines have to be taken into account to guarantee safety and comfort for the cus-
tomer. Legal requirements and internal targets exist, dictating required performance
for head impact safety during a crash. Also, internal targets from NVH aim to in-
crease the frequency of vibration at which resonance occurs. Furthermore, the two
disciplines impose potentially contradictory requirements on the component, e.g.,
decreased structural stiffness generally improves head impact outcomes while wors-
ening modal outcomes. To assure that these conflicting requirements are met and
that an appropriate balance is found, geometric features of the bracket are opti-
mized, taking multiple disciplines into account simultaneously in the optimization
process.

The CSDB is located between the CSD and the subframe, see Figure 1.3.

1. Introduction

Subframe

Center Stack
Display (CSD)

Cross Car
Beam (CCB)

Center Stack
Display Bracket
(CSDB)

Figure 1.3: Side view of a CSDB and its associated components from a recent
VCC model. Note that this is not the exact geometry used in this work.

Current design work relies on communication among discipline experts who test
and optimize components within their respective discipline, and by collaborating
and iterating the process until a final design is reached. This is a challenging and
potentially time-inefficient process. The thesis work investigates and develops a
multidisciplinary optimization process to be used by the CAE team of the Interior
Room Integration department at VCC to alleviate this situation.

1.2 Purpose and Aim

The purpose of the thesis is to explore and develop an MDO methodology to be used
for solving design problems exhibiting conflicting requirements using commercial
software. It aims to establish a practical process to be used in VCC’s development
of interior, structural components. The considered disciplines in this study are NVH
and crashworthiness — specifically, head impact accelerations and eigenfrequency
at the first mode. A CSDB is used as a case study to verify that the suggested MDO
process can be used for similar problems in the future.

1. Introduction

1.3 Limitations

The delimitations and limitations restricting the scope of the thesis are as follows:

The disciplines under consideration are NVH and crashworthiness, however,
the MDO process is to be developed to allow for other disciplines as well.

Software used are ANSA for pre-processing, MSC Nastran for modal analysis,
LS-DYNA for crash analysis, META for post-processing, and modeFRON-
TIER for MDO workflow creation.

Programming languages used are Bash and Python.

The choice of material for the component under optimization is treated as
given and therefore material selection is not considered.

The interfaces between the CSDB and other components are fixed.
Cost models are not included.

The optimization procedure is limited to optimize the geometry of a pre-
existing, mature concept.

Optimization is restricted to sizing optimization, but the MDO process is
designed to allow for other optimization types as well.

The work aims to integrate MDO into a practical workflow. Therefore, mathe-
matical features of particular MDO methods and optimization algorithms will
not be investigated in any greater detail.

CAD interpretation of optimization results is not performed.

The work is carried out by two students during 20 weeks.

1.4 Research Questions

The project intends to investigate the following questions:

1.

What needs exist for an MDO process within the application area, i.e., opti-
mization of interior structural components subject to crash and NVH require-
ments?

. How can an MDO process be developed and implemented in selected software?
. How can the developed MDO process be verified?
. What are the organizational and sustainability implications of employing MDO

in automotive engineering?

1. Introduction

1.5 Thesis Outline

In Chapter 2, theory relevant to the work is presented, e.g., in areas of statistics,
optimization, Design of Experiments, metamodeling, and MDO. Chapter 3 describes
the methodology of the thesis work. Subsequently, Chapter 4 reports on empirical
findings from a pre-study and demonstrates the development of an MDO process
using a simplified geometry. To verify that the MDO process developed in Chapter
4 can be applied to a real design problem, Chapter 5 presents a multidisciplinary
optimization of the CSDB and evaluates two problem formulation variations as
well as software implementation in MDO platform modeFRONTIER by ESTECO
SpA. Penultimately, the discussion in Chapter 6 places particular emphasis on the
fourth research question, see Section 1.4, as well as organizational implications and
limitations of the thesis and proposed process. Recommendations for future work
are also given. Finally, Chapter 7 concludes significant findings of the work.

2

Theory

This chapter introduces the reader to relevant theoretical concepts that are used
in this thesis. Topics include: basics of modal and crash analysis, an introduction
to design optimization, statistical theory, Design of Experiments, metamodels, and
finally, multidisciplinary design optimization.

2.1 Modal and Crash Analysis

The theoretical basis of the engineering disciplines used in the problem introduced
in Section 1.1.4 is briefly presented below. Both analyses utilize Finite Element
(FE) models with which theory the readers are assumed to be familiar.

2.1.1 Modal Analysis

Modal analysis is defined by Fu and He [10] as “the process of determining the in-
herent dynamic characteristics of a system in forms of natural frequencies, damping
factors, and mode shapes, and using them to formulate a mathematical model for
its dynamic behavior”. Natural frequencies, also called eigenfrequencies, are fre-
quencies of vibration at which the system’s amplitude asymptotically increases to
infinity. Each natural frequency has an associated mode shape that describes how
the system deforms, although the amplitude at a particular time step is unknown.
Fundamentally, natural frequencies and modes are determined by a system’s phys-
ical properties [10]. Any physical system or structure can be modeled as a set of
springs, masses, and dampers. If a system is modeled as an undamped spring-mass
system, its natural frequency f can be described as:

1 [k
f= QW\/; [Hz (2.1)

where k is the spring constant, i.e., its stiffness, and m is the mass. Increasing a
system’s stiffness increases its natural frequency while increasing its mass decreases
its natural frequency. The stiffness of a system in a particular load case depends on
its material properties (i.e., its Young’s modulus) and its geometry. The eigenfre-
quency of the first mode is often of interest in modal analysis. The significance of
this property in the automotive industry is that it is a key performance metric in

NVH.

2. Theory

2.1.2 Crash Analysis

Crash analysis, or crashworthiness, is defined by Alkbir et al. [11] as “the capability
of a vehicle to protect its occupants and passengers from serious injury and harm
or death in case of accidents or sudden impacts of a specified magnitude”. During
crash events, automotive components can undergo significant plastic deformations,
absorbing large amounts of energy [12]. Complex interactions between parts and nu-
merical instabilities can lead to simulated vehicle crashes exhibiting nonlinear and
noisy responses, e.g., for peak acceleration [13].

Two crash metrics of interest in automotive crash analysis are the maximum head
acceleration within a 3-millisecond interval, called clip3ms or clip3m, according to
regulation [14], as well as the maximum head acceleration, see Figure 2.1.

Acceleration (G)

amax

aclip3msmmm '

Time (ms)

3ms

Figure 2.1: Schematic representation of acceleration curve under head impact.
Maximum acceleration a,,., and maximum acceleration under a 3 milliseconds time
interval acipsms are denoted.

2.2 Introduction to Design Optimization

Since multidisciplinary design optimization relies on a general understanding of op-
timization, a brief background of design optimization follows.

The purpose of product development processes is to design objects which best sat-
isfy a particular need, subject to imposed limitations [15]. In outline, this process
traditionally proceeds as follows (with iterations omitted):

1. Problem definition.

Concept synthesis.

Analysis of proposed concepts.
Selection of the best concept.
Testing against needs.

O N

2. Theory

The engineers involved in this process utilize their knowledge and experience in the
application area at each stage to guide their choices. However, intuitive judgment
and trial-and-error can lead to costly outcomes due to the resulting product sub-
optimality and lengthy development cycles. Design optimization addresses these
inefficiencies by introducing a formalized approach to selecting the “best” design
within limited means [15]. It is also used to explore the design space and learn
about the system under optimization.

After having defined the system and its boundaries, an optimization can be mathe-
matically formulated in so called negative null form as:

min f(x, p)
subject to h(x,p) =0 (2.2)

g(x,p) <0

Where the objective function f(x,p) of design variable vector x and parameter
vector p is minimized while respecting equality and inequality constraints h(x,p)
and g(x, p) respectively. The objective function f(x,p) is what describes the per-
formance of the design, but it should be noted that it is not always a strictly
mathematical function, or functions, but may also be a system of equations or a
computer-based procedure [15]. Design variables x are the inputs that are open for
modification while parameters p are assumed fixed, e.g., physical constants or load
cases. Constraints h(x, p) and g(x,p) are imposed by governing equations and by
the designer according to the nature of the engineering problem, e.g., a maximum
allowed stress of a structure when mass is minimized, as is common in structural
optimization [16]. If the objective and constraint functions are linear functions it is
a linear programming (LP) problem. If any functions are nonlinear it is a nonlinear
programming (NLP) problem [17].

Once the problem is formulated, models are chosen to act as bases for the opti-
mization. Models can be fundamental (e.g., mechanics, fluid dynamics), numerical
(e.g., FEM, CFD) or data-driven (e.g., Design of Experiments) depending on the
needs and limitations of the application. The setup of models, and their antecedent
formulation require care to ensure that they represent reality to an acceptably ac-
curate degree. The translation to mathematical formulations can otherwise bring
suboptimality in reality even if the optimization yields the mathematically optimal
solution [18]. Algorithms are next deployed to solve the optimization problem, i.e.,
finding the set of optimizers x* that yields the optimum f*.

2.2.1 Optimization Algorithms

In theory, model analysis alone can solve optimization problems, but this is often
only the case in simple problems rarely found in engineering contexts. Therefore,
optimization practitioners typically employ numerical methods for NLPs after study-
ing the formulation characteristics (e.g., monotonicity and redundancy) [15]. Since
no algorithm produces reliable results efficiently for every circumstance, different

2. Theory

computational techniques are used depending on the nature of the optimization
problem. In general, the types of optimization algorithms can be divided into local
and global algorithms as well as gradient and nongradient (also called gradient-free)
algorithms [19].

Local Optimization Algorithms

Local optimization algorithms search for the optimum from a set starting point and
stop the search once it finds a local optimum. Local algorithms are also typically
gradient-based in that they use local first and second derivatives to guide the next
step in the iteration. However, unless the response is simple (i.e., without multiple
extrema), it is uncertain whether or not the point that the algorithm converges
upon is also the global optimum. The use of multiple starting points can be a
way of circumventing this issue. Gradient-based, local algorithms scale well with
the number of design variables due to their computational efficiency, especially if
analytic derivatives are used instead of finite-difference approximations [19], [20].

Global Optimization Algorithms

Global optimization algorithms search a larger set of the design space than local
algorithms. This family of algorithms is often stochastic (although deterministic
methods exist [21]) in that they utilize randomness to select starting points and
subsequent evaluation points. Global algorithms are often also nongradient and,
in that case, do not require differentiable functions like gradient-based approaches.
Nongradient optimization algorithms are typically employed when the responses are
multimodal, noisy, or discontinuous. The number of iterations required scales poorly
with the number of design variables when compared with gradient-based algorithms
[19]. The reader is directed to [22] and [23] for further reading about nongradient
optimization algorithms not presented here.

2.2.2 Multi-Objective Optimization

There are many cases where there either is not a single objective function bound
by constraints but rather multiple objective functions or that the designer’s under-
standing of the system would be enhanced by exploring trade-offs between different
performance criteria before selecting a design. The formulation of min f(x,p) as
stated in Eq. 2.2 is then the following for the objective functions:

fi (X, P)

minf(x,p) = f2<):(7 P) (2.3)

fulx. D)

where n is the number of objective functions in the general multi-objective opti-
mization (MOO) problem. However, typically, only 2 or 3 objective functions are
used. Unless the design variables x are separable, i.e., the objectives are functions
of non-overlapping design variable sets, a trade-off is required to select a design for

10

2. Theory

systems with conflicting requirements.
A design is said to dominate another design if the former outperforms the latter
in all objectives. A nondominated design is said to be Pareto optimal and part of

the Pareto set, which in turn forms the curve called the Pareto frontier or Pareto
front [15], see Figure 2.2.

f Dominated ~__

Pareto frontier —

Non-dominated

Figure 2.2: Pareto optimality in a min-min problem, i.e., a problem where both
objectives are minimized. Points represent evaluations in the design space with the
objective functions f; and fs.

A Pareto optimal design may then be chosen from the Pareto set based on the
relative weight of f; to fo. The weighting can be expressed informally as a preference
for a particular point on the curve that is considered a “good” trade-off between the
objectives or formally by using weighted sum techniques that more exactly express
preferences about the relative importance of the objectives. Changing the objective
units may also be prudent if the relative magnitude of the objectives is large, but
this is to be separated from the preference weighting [24].

Multi-Objective Genetic Algorithms

Genetic algorithms are a family of stochastic optimization algorithms and utilize
the same principle as Darwin’s theory of evolution by natural selection, i.e., where a
population of individuals mutates over generations. The best-adapted individuals in
the population are selected and influence subsequent generations. In optimization,
genetic algorithms use this principle of genetics and evolution to converge on an
optimal design for a particular problem formulation [25]. See Figure 2.3 for a general
genetic algorithm process.

11

2. Theory

Initialize
population

!

Select
parents

!

Generate
offspring

!

Evaluate
fitness

i

Add offspring
into population

No

Convergence?

Solution set

Figure 2.3: A general genetic algorithm process [26].

While there are many variants of genetic algorithms, this work is limited to the
Multi-Objective Genetic Algorithm (MOGA-II) which is a non-gradient, global al-
gorithm that operates by reproduction and elitism. Furthermore, MOGA-II uses
four different operators for reproduction; classical crossover, directional crossover,

mutation, and selection [27], see Figure 2.4.

(a) One-point crossover (b) Directional crossover
1 f21 L L
00:0111 — 11 0111 mproved
i < design I, /
111001 —— 00 1001
© Mutation
1101 01 ———=0 101 10 mproved design .

Figure 2.4: Schematic example of (a) one-point crossover where a portion of the
genetic material is exchanged between two parent variables, (b) directional crossover
where fitness values of two reference individuals (/; and ;) from a population are
used to generate a third one I3, and (¢) mutation which induces diversity between

generations.

12

2. Theory

Using these operators, MOGA-II generates and selects superior design points, over
generations pushing the design points toward the desired direction of the optimiza-
tion problem, see Figure 2.5.

1st generation 2nd generation nth generation

f f f

1 1 1

Figure 2.5: Genetic algorithm behavior over generations 1,2,...,n in a multi-
objective approach with objectives f; and fs to be minimized.

The MOGA-II version is an improved version of MOGA by Polini [28] and has proven
to be an efficient method for solving multi-objective optimization problems [29] and
is recognized for its robustness when employed on various types of optimization
problems, including noisy ones [30].

2.3 Statistical Theory

Following Ryberg, Backryd, and Nilsson [6], some fundamental statistical theory is
included to aid in upcoming topics such as Design of Experiments, variable screen-
ing, and metamodeling.

A variable is said to be random if it depends on the outcome of a random, or
stochastic, phenomenon. The expected value is denoted as E[z] and can be thought
of as the arithmetic mean p. The expected value can be formulated as the following
for discrete variables:

py = Elx] = i x; Py(x;) (2.4)

Where P is the probability and z; are all (n) possible values of x. Informally, the
expected value is the sum of all possible values of the random variable multiplied
by its probability function.

Random variables are often assumed to follow a probability density function of
the normal or Gaussian distribution that can be formulated as:

1 2 2
P(z) = ——e@—H7/20 2.5
(@) = —= 2.5)

13

2. Theory

where o is the standard deviation and p is the mean in a “bell-shaped” curve. The
variance of x is defined as Var|x] = ¢% and the covariance between random variables
x and y is defined as:

Covlz,y] = El(z — Elz])(y — Ely])] (2.6)

The variance describes the spread around the mean, and covariance describes the
degree of directional relationship between two variables.

The correlation R between two variables describes the linear relationship between
two variables from -1 (perfectly negative) to 1 (perfectly positive) with 0 representing
independency. Correlation can be formulated as:

Cov(z,y)

050y

R=Cor(z,y) = (2.7)

Lastly, statistical theory can be used to detect important or sensitive variables from a
data set, e.g., in sensitivity analysis. The statistical modeling algorithm Smoothing
Spline Analysis of Variance (SSANOVA) makes use of the underlying theory of
ANOVA, i.e., assessing the size of variance among group means compared to the
average variance within groups [31]. The addition of smoothing splines enables the
method to become suitable for multivariate modeling or regression when applied to
a noisy dataset. For a more detailed description of SSANOVA, see [32].

2.4 Design of Experiments

Design of Experiments (DoE) is a branch of statistics primarily concerned with the
planning and analyzing of experiments [33]. DoE is widely used in science to reduce
the number of experiments that need to be performed. In this work, concepts from
DoE are used in the contexts of variable screening and modeling. In the former
case, classical designs are typically favored, while in the latter case, more advanced,
space-filling designs are more widely used for reasons described in Section 2.4.2.

2.4.1 Experimental Design for Screening

Variable screening aims to reduce the number of design variables, called factors in
DoE, by sorting out less significant variables to speed up the optimization process
and improve the designers’ understanding of the system’s behavior [33].

Factorial Designs

The number of samples in the design space, also called the experimental domain,
varies depending on what design is used. See Figure 2.6 for three common experi-
mental designs in the factorial family.

14

2. Theory

(b) (c)

Figure 2.6: Representation of design points in the experimental domain: (a) 3-
level, 3-factor full factorial design with 33 points; (b) 2-level, 3-factor full factorial
design with 23 points; (c) 2-level, 3-factor 1/2 fractional factorial design with 2371
points.

The full factorial with three levels and three factors samples a low, medium, and
high value of the factors x1, 2,3 and can be used to generate a quadratic model
of the system behavior. If linear behavior can be assumed, a full factorial design
with two levels can be used, reducing the design points from 3% to 2%, where k is
the number of variables or factors. Both of the aforementioned designs can be used
to investigate main effects and second-order interaction effects. The design can be
simplified by: (1) assuming higher-order effects to be nonexistent or (2) assuming
interaction effects to be insignificant to the variable screening. Both (1) and (2) need
to be based on a fundamental understanding of the problem and its physics or tested
with a more populous experimental design to verify the assumptions’ validity. In the
case that second-order, and higher, effects can be ignored, resolution III design can
be effective. This design resolution means that no main effects are confounded with
each other, but main effects and interaction effects may be confounded, i.e., that
they cannot be distinguished between. Fractional factorial with 2¥~7 runs (where k
is the number of factors and p is the fraction of the full factorial 2¥), see Figure 2.6,
or Plackett-Burman designs are suitable in this case [33], [34].

Plackett-Burman Designs

The Plackett-Burman (P-B) approach originated from Placket and Burman [35] as
a method to determine main effects without the use of a factorial design. Using P-B
designs is a popular approach when studying up to &k = (N — 1)/(L — 1) factors
where N is the number of runs (a multiple of 4) and L is the number of levels. If
N is set as a power of 2 then the resulting designs are called geometric and are
equivalent to fractional factorial designs. When N is a multiple of 4, the designs are
called non-geometric; these are typically advised to use if interaction effects can be
neglected [33]. A distinct advantage of P-B designs is their efficiency in terms of the
low number of required runs for screening when only main effects are of interest.

15

2. Theory

2.4.2 Experimental Design for Modeling

Modeling, covered in Section 2.5, requires a different set of design points to model fit
on than the screening designs can provide with reasonable computational efficiency.
According to scientific consensus [6], space-filling experimental designs are used to
train metamodels.

Uniform Latin Hypercube

Latin Hypercube Sampling (LHS) [36], specifically Uniform Latin Hypercube (ULH)
sampling, is recommended by modeFRONTIER documentation to be appropriate
for metamodel training [37]. LHS and ULH can be used for multidimensional sam-
pling but are illustrated using a two-dimensional case for clarity.

Generating random points in the design space to use for sampling, e.g., Monte Carlo
sampling, has the downside that these points may be unequally distributed. For in-
stance, large areas of the space may have no points while other areas have needlessly
many points. It is, therefore, an unsuitable sampling method for representing large
design spaces. To avoid large sampling gaps, LHS divides the space into a grid pat-
tern and generates a single point in each row and column. The resolution of the grid,
i.e., the number of rows and columns, depends on the number of factors k and the
number of runs N. This forms a Latin Square in two-dimensional space, however,
the same principle is used for multidimensional distribution, then forming a Latin
Hypercube [38]. ULH is a type of LHS that minimizes the correlations between input
variables while also maximizing the distance between points to achieve uniformity
[39]. While LHS creates uniform distributions only for continuous variables, ULH
can create uniform distributions also in the case of discrete variables [37]. Figure 2.7
illustrates how design point distribution can vary between Monte Carlo sampling,
classic LHS and ULH with N = 10 points. Note the increased uniformity in ULH.

10 10 10

X X X

(a) (b) (c)

Figure 2.7: Point distribution in a bidimensional space with various sampling
algorithms: (a) Simple Monte Carlo sampling; (b) non-space-filling or random Latin
Hypercube; (¢) space-filling Uniform Latin Hypercube.

The points generated from a space-filling DoE are then used as data sets to train
metamodels.

16

2. Theory

2.5 Metamodels

Metamodels, also called response surface models or surrogate models, are used to
approximate system responses. Metamodels are employed in design optimization to
(1) minimize computational expense [26], (2) reduce the effects of numerical noise
[40], and (3) enhance understanding of the functional relationship between a system’s
inputs and outputs [41]. To provide context to the metamodeling process, Quipo et
al. [42] suggest the key stages illustrated in Figure 2.8.

. . Metamodel
Design of Numerical .
¢ | . creation, _ Model
Experiments » simulation at > . > L
: comparison and validation
(DoE) selected points .
selection
[} : A

T

|
1 1 |
I ;'— |
I |
| Modification of !
———————————————————————— DoE and/or |®--------

metamodel
—_

Figure 2.8: Key stages of the metamodeling process, adapted from [42]. Dashed
lines indicate steps that may be required if a subprocess arrives at an unsatisfactory
result.

As discussed in Section 2.4.2, a space-filling DoE design is first used to sample the de-
sign space. Computationally expensive numerical simulations are subsequently run
at the points sampled at the DoE stage. The evaluations based on simulations may
for this purpose be called real and evaluations based on metamodels may be called
virtual [37]. The responses (i.e., outputs) of the simulation models from the real
points (i.e., inputs) can then be used to train metamodels. Metamodel-based opti-
mization can then be used to arrive at optimization results using significantly fewer
computational resources than real optimization, assuming simulations are computa-
tionally costly [42].

Validation can be performed as a part of the metamodel comparison and selec-
tion stage by using a part of the training data set as a validation set; this is also
called a split sample [42] or simple cross-validation [19]. If the fit of the metamodel
is insufficiently good, its settings may need to be adjusted, or a different type of
metamodel needs to be trained. Insufficient training data may also result in a poor
fit, necessitating an increase in DoE resolution. Alternatively, validation can be per-
formed after optimization by comparing the virtual optimization to a real simulation
using the optimizers. This is particularly necessary if the metamodel has large local
errors because the optimizers may lay in that high-error area.

A comprehensive survey of metamodels is much beyond the scope of this work and

as such the reader is directed to [38] and [41] for further reading on the topic of
metamodels and their application in design optimization. The types of metamodels

17

2. Theory

used in this work are described below. A distinction is made between approzimat-
ing and interpolating models. The latter passes exactly through the training points
while the former does not.

2.5.1 Polynomial Regression

Low-order polynomial regression [43] is a common and simple type of approximating
metamodel. A general, n-th order, polynomial regression model can be formulated
as:

f = B0+ Brx + Bor® + - + Boz” (2.8)

where the approximation f = f + ¢, where ¢ is the error, 5y is the bias and ; are
the weights (where ¢ = 1,2,--- ,n). Bias and weights are set by minimizing the
error. Error minimization is typically done using the method of least squares, i.e.,
minimizing the sum of the squared errors. Many polynomial models of differing
orders can be fitted and subsequently compared with error measures to select the
best order. Alternatively, and especially if the design variables are many, some
stepwise regression methods can be used to find an appropriate polynomial degree.
The order of polynomial models that can be trained is a function of the training data
size, i.e., the number of points generated by a space-filling DoE, see Section 2.4.2.
Excluding validation points, the minimum training data size required by polynomial
regression of degree d for p number of parameters can be formulated as:

(p+d)!

T (2.9)

Minimum no. of points =

As is evident from the relationship in Eq. 2.9, the number of required samples for
anything other than low-order polynomials can be restrictive, e.g., an optimization
with 5 DVs being fitted with a 7-degree curve requires 792 runs (excl. validation
points), which can be infeasible with computationally costly simulations. Polyno-
mial approaches can be used to identify main trends but may be unsuitable as a
metamodel unless responses are simple, unlike multimodal problems [37]. While still
a popular method in optimization [44], polynomial regression is being fast replaced
by radial basis approaches according to Forrester and Keane [38].

2.5.2 Radial Basis Functions

Radial basis functions (RBFs) are interpolating models that can be described in
simple terms as using a weighted sum of multiple simple functions that together
exhibits more complex behavior. See Figure 2.9 for a simple illustration in two
dimensions. The complexity can be considerably higher with multivariate functions
and many points, but the principles are the same.

18

2. Theory

Basis functions —— Interpolant

Figure 2.9: RBF interpolation with n = 3 using inverse multiquadrics, adapted
from [45].

The use of RBFs as approximation functions was first proposed by Hardy [46] in
geophysics to fit topological data using scattered data sets. In general, RBFs are
expressed in terms of the Euclidean distance, also called the radial distance r =
|| — x;|| from an approximating point & to a measured data point x; which is the
center point for an RBF. Perhaps the most common form is using a multiquadric
function as Hardy [46] originally did:

() = /r2 — 2 (2.10)

where ¢ > 0 is a shape parameter that controls the function’s width. The approxi-
mation uses the linear combination of the basis functions in all data points:

fa) = leaiww) (2.11)

where n is the number of data points, and o; are coefficients that are determined by
solving the resulting linear system of equations that forms when constraints of in-
terpolation, i.e., f = f, are included [44]. Many RBF variants exist, the description
of which is beyond the scope of this text. See [47] for a survey of commonly used
variants.

A considerable benefit with RBFs compared to polynomial regression is that the
former is less sensitive to problem dimensionality, i.e., the number of DVs. As cov-
ered in Section 2.5.1, polynomial regression requires a minimum number of points
to fit a specific function degree, see equation 2.9, this is, however, not the case

19

2. Theory

with RBFs, at least to an extent. Another significant benefit is their performance
in fitting on scattered data in multiple dimensions and their relative ease of use
compared with more advanced methods, e.g., Kriging [44]. Without special mod-
ification, RBFs are most appropriately used for smooth responses devoid of noise
[37].

2.5.3 Kriging

Originally developed by Krige [48] in the field of geostatistics, Kriging is a proba-
bilistic, (often) interpolating, method that uses responses at nearby sample points
to estimate the response at a non-sampled point. The many variations and details of
Kriging are beyond the scope of the present text. However, some brief introduction
is presented, for further details, the reader is referred to [49] and [50].

Operating under the assumption that nearby sample points are more likely to have
a similar response than more distant sample points, Kriging involves calculating a
weighted sum of nearby sample point responses. This can be formulated as:

n

F@) =3 Nif(z) (2.12)

i=1

where \; is the weight at ¢ and otherwise adopting the notation from Section 2.5.2,
weights are determined by fitting a so-called variogram that describes the variability,
or covariance, between a pair of points as a function of distance h. Initially, an
experimental variogram function y(h) of the sample set is constructed. A theoretical
variogram is then fitted to the experimental variogram, one of several mathematical
models, e.g., exponential, Gaussian, or spheric [51]. Figure 2.10 shows a theoretical
variogram fitted to an experimental one.

v(h)]

Sillbp= st sane :

nugget T

\/

range

Figure 2.10: Theoretical variogram fitting with spherical model to an experimental
variogram with associated notation. Adapted from [51].

In practice, Kriging is suitably used for modeling highly non-linear systems and can
be used for both noisy and noise-free systems by changing model parameters. Noise

20

2. Theory

can be added to make the algorithm approximating. A consideration is that Kriging
is computationally expensive relative to other metamodeling approaches described
in this text. It may be slow to converge or may fail to do so in cases where n > 1000
(n being the number of designs) [37].

2.5.4 Performance Indices for Metamodels

When fitting a metamodel to a number of design points and using a validation set
of points n,, the difference between the observed value x; and the approximated
value Z; can be used to evaluate the metamodel’s accuracy. The mean absolute
error (MAE) provides the actual average value from the comparison between the
observed and approximated values and can be formulated as:

iy

MAE = (2.13)

Ty

Using the mean relative error (MRE), also called mean absolute percentage error
(MAPE), the error can instead be described in percentage as the ratio between the
MAE compared to the real design values:

Ny |s — &4
MRE:EZ:lil‘i.l()o (2.14)

Ty

Both MAE and MRE are performance indices describing the error of the metamodel,
meaning a higher value corresponds to a higher error and thus lower accuracy of the
metamodel [6].

2.6 Multidisciplinary Design Optimization

As mentioned in Section 1.1.3, with increasing competition and customer demand,
more pressure is placed on companies to produce high-value products in shorter
development cycles. Operating in such a competitive environment requires the
coordination of complex interactions between multiple disciplines in the product
development process. MDO is employed to this end, by for example, minimizing
mass while the problem is constrained by performance requirements from several
disciplines in the automotive sector. Cost models, manufacturing constraints, and
constraints from less traditional disciplines may also be integrated into the MDO
setup [52].

By considering several disciplines simultaneously in the optimization process, rather
than a single discipline at a time in isolation, a multidisciplinary feasible design
can be achieved as a result. While this has been done to some degree in an infor-
mal manner by engineering judgment and communication via disciplinary experts,
MDO introduces a mathematical and more formal approach to optimization that
takes multiple disciplines into account, preferably by exploiting synergies [4].

21

2. Theory

2.6.1 Terminology and General Formulation

As MDO deals with multiple disciplines, a distinction between local- and shared
variables is made. Local variables belong to one specific discipline, while shared
variables are variables included in more than one discipline [19]. Discipline-specific
data is here denoted to as (); and [53] is used to denote shared data ()o . Further-
more, disciplines may interact in a manner where one discipline’s output is required
as input for another discipline. This behavior is referred to as a coupling variable,
denoted y. Variables affecting more than one discipline, through a shared- or cou-
pling behavior, need to be consistent. This means that variable copies (¥) or shared
variables are consistent with their corresponding shared variables for every system it
is associated with. Similarly, coupling variables inputs for a certain discipline need
to be consistent with their corresponding discipline output. Shared- and coupled
variable consistency is required for system consistency to be achieved. Moreover,
a state variable (y) is the value of a variable at a certain state of the system [53], [54].

The problem formulation is thus formulated as the following:

min fo(x, y) + E": f(x0,%:,y;)

i=1
with respect to X,y,y,y

subject to co(x,y) > 0 (2.15)
ci(x0,%X;,y;) >0 fori=1,2,...n
c;=y,—y;,=0 fori=1,2,..n
Ri(x0,Xi, ¥, ¥i,y;) =0 fori=1,2,...n

The general formulation accounts for the interaction between all disciplines in the
system by including all behavior in the form of coupling, state, copies, consistency,
and residuals. While it is rarely directly applied to optimization problems, its math-
ematical formulation describes all aspects of a general MDO [53].

2.6.2 Architectures

As a result of the need to coordinate disciplines for a vast variety of design problems
and application areas, research in the last decades has been devoted to developing
so-called MDO architectures. MDO architecture, also called strategy, procedure, or
framework refers to how the optimization problem is solved and how the coordination
between disciplines (or objects) is organized [53]. This extensive literature field
cannot be mapped in its entirety in this work, however, an overview is provided to
give context. Since architecture selection is typically made on an ad hoc basis [55],
some information about the alternatives may guide an engineer who is new to the
area. See Figure 2.11 for an introductory overview of MDO architectures.

22

2. Theory

Monolithic

. Distributed architectures
architectures

]
]
]
]
]
]
AAO ! ASO BLISS €SSO MDOIS
]
]
MDF :
]
]
]
MAUD ! co BLISS-2000 QSD
]
]
IDF :
]
]
]
SAND : ATC IPD/EPD ECO
]

Figure 2.11: A selection of MDO architectures and their categorization.

Architectures are divided into two main categories: monolithic and distributed. The
difference is that monolithic formulations consist of a single optimization problem
being solved while distributed formulations divide the problem into several subprob-
lems that contain subsets of associated variables and constraints [53]. Monolithic
architectures use a single optimizer and generally perform better if the problem
remains at a small scale [55], tentatively in the order of 10! design variables. Dis-
tributed architectures were developed by modifying already existing monolithic ar-
chitectures, specifically the monolithic architectures Individual Discipline Feasible
(IDF) and Multidisciplinary Feasible (MDF), using more than one optimizer in or-
der to decompose a problem with coupling behavior. The details of each method
are not elaborated upon in this report as this is considered beyond the scope. The
reader is referred to A Survey of Architectures [53] for a survey of the architectures
shown in Figure 2.11 and their technical differences, with the exception of modular
analysis and unified derivatives (MAUD), see [56].

In addition to division by monolithic and distributed, architectures may also be
classified by whether they are aimed at object- or aspect-based decomposition, as
identified by Wagner [57].

(a) System (b) System
component component
I |
[I] [[]
S S - Sub- Sub- Sub-
Discipline 1 Discipline 2 Discipline 3 component 1 component 2 component 3

| | |
Figure 2.12: Aspect-based decomposition (a) and object-based decomposition (b).

The former is a hierarchical structure in which the top-level represents the whole
system, followed by subsystems and their respective components in an inverted tree
structure. The latter is a bi-level hierarchy where the system resides at the top

23

2. Theory

level, and the disciplines (i.e., aspects) are at the lower level. Some architectures
are oriented more to one of the aforementioned decomposition types, e.g., analytical
target cascading (ATC) [58], and may be less suitable for the other type.

Monolithic architectures are commonly employed over distributed architectures in
the automotive industry [6] and are generally preferred when the study focuses on
a single component. Distributed architectures can be advantageous in medium-
to larger systems, where the system favorably is decomposed into a system- and
subsystem component(s). Furthermore, distributed architectures are generally ap-
plied to larger systems in organizations where automation and in-house expertise
are coveted [6]. However, most distributed architectures require a specific structure
to be considered, and even so, monolithic approaches tend to converge more rapidly,
decreasing the usage of distributed architectures in practical applications [19].

Extended Design Structure Matrix

An Extended Design Structure Matriz (XDSM) is used to illustrate the process
flow and data dependencies of architectures [59]. XDSM diagrams for the MDF
and IDF architectures can be found in Figure 2.13 and Figure 2.14 respectively.
The components in an XDSM follow a diagonal layout where the vertical flow in
an XDSM represents variable inputs to a component, while the horizontal flow
corresponds to the outputs. The small black lines represent the process flow, while
the larger grey ones represent the data dependencies. The arrow notations used in
the optimization- and multidisciplinary analysis (MDA) components indicate that
the process is to be iterated until a certain condition has been met.

Multidisciplinary Feasible

One of the most common ways of posing an MDO problem is using of the mul-
tidisciplinary feasible (MDF) architecture [54]. The problem formulation for the
MDF excludes the residual and consistency constraints from equation 2.15, making
it the smallest problem formulation out of all the monolithic architectures [53]. The
MDF architecture runs the discipline analyses sequentially and utilizes an MDA,
typically in the form of a Gauss-Seidel multidisciplinary analysis, to solve the gov-
erning equations for every discipline [55]. In MDF, the entire optimization problem
is thus divided between the MDA, solving the coupling behavior of the disciplines
to obtain system consistency, and the optimizer, controlling the objective function,
design variables, and design constraints. The process of an MDA is iterated, forcing
every discipline analysis to be performed multiple times until system consistency is
achieved [53].

24

2. Theory

E_ O?irrg;alz:ion J."IIr 2 Xy X, / J,r/ 31Xy X, J;l J{,.r 4%y, Xy / [&x
p

1,5-2: o oo | .
MDA _,.'/ 2.9, ¥, /_,i/ 3y
* 5 2: 3: &:
Yi B4 Analysis 1 Y Y
. 3:
@ l > ¥y H Analysis 2 / fll ! 6y, }
* . I-| _l .
Ys / > Yy / Analy5|5 3 S

! £ , 6:
e Functions

Figure 2.13: Gauss-Seidel multidisciplinary analysis for the MDF architecture [53].

Each optimization iteration requires a full MDA to be performed, requiring multidis-
ciplinary feasibility to be maintained. The exception is if derivative-based methods
are used to solve the optimization problem, for which the MDA is not required
at every iteration, but instead at every point where the problem is evaluated [54].
Therefore, the choice of optimization algorithm will affect if a feasible result can
be expected, should the process be terminated prematurely. Utilizing an MDA for
consistency purposes requires a high number of function evaluations and can result
in MDF being time-consuming in practice [53]. Nevertheless, MDF has potential
in cases of weakly coupled problems with low computational cost to run subsystem
analyses [15]. Moreover, the MDF architecture is an attractive option in practi-
cal problems since its small size results in lower problem dimensionality, and less
implementation complexity to set up [60].

Individual Discipline Feasible

While MDF runs discipline analyses in sequence and utilizes an MDA to maintain
multidisciplinary feasibility at every iteration, IDF does not require an MDA and
runs the discipline analyses in parallel. The analyses are allowed to run in parallel
since independent copies of coupling variables are added to the set of design vari-
ables [19], [55]. IDF thereby enforces single discipline feasibility at each design point
instead of multidisciplinary feasibility (compared to MDF) [54], [55]. Furthermore,
a set of consistency constraints are added to compare estimates to the actual cou-
pling variable values at optimum [19], [55]. IDF thereby enforces multidisciplinary
feasibility only at the optimum point and does not in any way guarantee feasibility
should the process end prematurely [15], [61].

25

2. Theory

f x| o ,J
* 0, 3 >1: -
E_ Optimization 1. X X3, ?ﬁ‘f

1-
* . 2. "
Y Analysis i | [~V

f a i 2:
i % c.c Functions

Figure 2.14: Process flow and data dependencies of the IDF architecture [53].

Tedford and Martins [55] illustrated how IDF tends to be the most computationally
efficient out of the monolithic architectures. However, it scales worse than MDF
when the number of design variables is increased [15]. In general, the advantages
of not utilizing an MDA allow IDF to converge several orders of magnitude quicker
than MDF [62] while being less computationally costly and more robust [55].

Automotive Considerations

As mentioned to in Section 1.1.3, MDO has been used extensively in the aerospace
industry while its use in the automotive industry is relatively more recent. In addi-
tion to different development environments, the type of engineering design problems
in these industries typically differ. The level of coupling between disciplines is one
such difference. As Béckryd et al. [9] notes: aerospace problems generally exhibit
linking by both shared and coupled variables, e.g., in wing design where structural
deformations and aerodynamic forces interact strongly. However, in the automo-
tive industry, linking between disciplines is weaker in that disciplines generally are
connected only with shared variables. The automotive context may be called a
multi-attribute rather than a strictly multi-disciplinary environment, according to
Agte et al. [8]. It shall also be noted that the monolithic architectures MDF and
IDF mathematically coincide for problems with only shared variables as opposed
to coupled variables [9]. In this case, the optimizer forwards variable values to the
discipline analyses, which return the contributions to the objective function and re-
spective values for the constraint functions. This parallel approach is used in the
present work.

26

3

Methodology

The thesis adopts a basic research methodology whereby a literature study is per-
formed following a specification of research aim and scope [63]. The literature and
theory study aims to elucidate concepts used in the work and to map recent scientific
developments that may be built upon. Other activities are specific to the present
work. The methodological process, see Figure 3.1, illustrates the steps taken in the
project in outline.

Iterations
Literature study l | ____________________
MDO software MDO process . MDO process i Final i
selection] development implementation I recommendations
on the CSDB ! !
Needs \ bbb '
assessment

Figure 3.1: Methodology in outline.

The respective steps in the process are elaborated upon in Sections 3.1-3.6.

3.1 Literature Study

A literature study is conducted to map previous literature that is conceptually and
practically relevant to this work. This is done to understand the knowledge gaps
that may be explored and utilize previous findings to aid the current work. The
scope includes relevant parts of the following topics: basic engineering optimization
theory, statistics, DoE, optimization algorithms, metamodels, and MDO. Materials
included in the literature study are journal articles, dissertations, working papers,
books, reports, and manuals.

3.2 Needs Assessment

To ascertain the needs related to an MDO process at VCC, a needs assessment is
performed. Brief interviews are performed to collect information on current work-
flows, optimization experience, and perceived hindrances and benefits with MDO.
Semi-structured interviews [64] are chosen to allow for a degree of guidance on the

27

3. Methodology

part of the interviewer while maintaining flexibility in the format to guide the in-
terview to areas of interest that may be difficult to identify in advance.

The sample of interviewees centers on the target demographic, namely CAE en-
gineers at VCC, but other stakeholders such as product owners are also included.
The team in which the thesis work is performed has priority. However, CAE engi-
neers in other departments are also interviewed as their needs are likely similar and
may be relevant if the selected MDO process is implemented at a larger scale than
for a single CAE team. As software and work processes are similar, a larger sample
also offers more information that may be pertinent even if scale-up does not occur.
Eight subjects were interviewed, and each interview took 20 to 30 minutes.

The collected information from interviews is anonymized and presented as an amal-
gamated needs list based on subjective interpretation of the collected interviewee
responses. Formal analysis techniques, e.g., thematic analysis [65], are deemed not
to offer enough benefit to warrant the additional effort due to the limited scope of
the needs assessment.

3.3 Software Selection

The term “MDO software” refers to the software in which the MDO process is coor-
dinated, and analysis is done. It is separate and distinct from the software package
required for running pre-processing, simulation, and post-processing but must com-
municate with these. Due to emphasis on ease-of-use and because VCC has licenses
to and existing knowledge about MDO-capable software, commercial software is
used as a basis for the work.

LS-OPT by Livermore Software Technology Corp. and modeFRONTIER by ES-
TECO SpA are both viable alternatives. Both LS-OPT and modeFRONTIER have
user-friendly Graphical User Interfaces (GUIs), support for external software, and
grid computing management. In-built post-processing and visualization tools are
also available. Support and regular updates are available for both software. How-
ever, modeFRONTIER is widely used among optimization experts at VCC, and
existing knowledge can be leveraged to a greater degree than if LS-OPT is selected.
ESTECO’s modeFRONTIER is therefore used in this work.

The Python-based, open-source platform OpenMDAO [20] was briefly investigated
as an alternative, although it is not commercial software. It supports gradient-based
optimization with analytic derivatives (as opposed to finite-difference approxima-
tions). The number of design variables that can feasibly be used is significantly
greater than in commercial software, up to the order of 10 has been demonstrated
[66]. A basic GUI is under development and plugins for simulation software exist,
but implementation difficulty is considerably greater than in commercial software.
Reliable support is unavailable due to the open-source nature of the platform. Open-
MDADO is therefore not recommended for present purposes. For a further discussion
of when the use of OpenMDAO is warranted, see Section 6.3.

28

3. Methodology

3.4 Process Development

In this context, the term “MDO process” is synonymous with “MDO methodology”
and refers to the process that receives the parameterized model and requirements
as inputs and outputs the optimization result (which can then be interpreted in a
CAD model and checked against requirements).

A general workflow is developed based on findings from the literature study and
the needs assessment and can be implemented in any software procedure capable
of performing the steps outlined in the process. The general workflow is practically
developed as follows.

As mentioned in Section 3.3, modeFRONTIER is used for MDO implementation.
The process is developed in the selected software using a simplified geometry and
mesh to achieve more rapid debugging than would have been possible with the CSDB
mesh (and associated geometry required in the analysis, i.e., components that the
CSDB is connected to). The faster iterations are possible mainly because less time
is spent on running simulations. An illustrative comparison is that design point
evaluations with the simplified geometry runs approximately 40 times fast than a
crash simulation of the CSDB concept and instrument panel.

Because the focus in this thesis lies on process rather than component development,
the geometry need not necessarily reflect the CSDB or any other component at this
stage. However, care must be taken to ensure that responses are predictable, e.g.,
that the first mode shape is kept the same under varying design variables values.
Beyond reduced simulation time, a less complex mesh in process development simpli-
fies debugging due to fewer geometric parameters. This places focus on the process
development rather than handling issues that might arise with the specific geometry.

The overlapping boxes in Figure 3.1 for “MDO process development” indicate that
several subprocesses are developed. Initially, single-discipline processes or work-
flows are developed separately. Note also that simulation data automation occurs
in this step. This refers to scripting that allows for runs to be started, results to
be saved in specified directories, nested scripts that post-process simulation results,
and extracts responses as outputs in the process. Dynamic waiting for results is
also implemented at this automation stage, see Section 4.2. Once single-discipline
processes are developed, the combination of their respective parts and associated
scripts is straightforward to implement in modeFRONTIER.

3.5 Process Implementation on CSDB

Once a working MDO implementation in modeFRONTIER has been established
using simple geometry, the process is tested on the CSDB component for verification.
The main differences compared to the simple geometry are the level of geometric
complexity and the number of load cases. The overlapping boxes in Figure 3.1

29

3. Methodology

indicate several iterations and formulation variations are tried on the CSDB problem.
If unexpected limitations are discovered at this stage, further iteration in process
development may take place.

3.6 Final Recommendations

The last major step in the process is to provide final recommendations based on
important decisions and other learnings received from developing and verifying the
MDO process both conceptually and as a matter of implementation. This includes
essential trade-offs to consider, process limitations, and organizational- as well as
sustainability-related considerations.

30

4

Process Development

This chapter presents findings related to the development of the MDO process, both
conceptually and as a matter of implementation. Findings from the needs assessment
are listed, implementation in modeFRONTIER is detailed, and the resulting process
is illustrated using a simple example while decisions made are elaborated upon
throughout the chapter.

4.1 Needs Assessment Findings

The needs assessment, see Section 3.2, aims to ascertain the following:

o What is the current practice with regards to achieving component or system
requirements across disciplines?

o What software is used for CAE simulation and optimization?

o What is the level of optimization maturity?

o What are the perceived hindrances with MDO?

o What features of an MDO workflow are perceived as desirable?

Sections 4.1.1-4.1.5 present the findings on each topic as an amalgamation of the
answers given by all interviewees.

4.1.1 Current Practice

Work in and between CAD and CAE departments forms a major part of the product
development process. Once a design is conceived, iterations are performed both on
the level of the design engineer(s) and the CAE engineer(s) before proceeding to
physical prototypes and verification. The design engineers change the CAD geom-
etry and pass designs onto CAE for testing, while CAE engineers change the finite
element (FE) mesh directly to perform iterative looping and evaluate performance
changes. The number of loops may exceed 100 on the CAE level for a single compo-
nent. Knowledge gathered from simulations combined with engineering experience
guides each iteration.

Fulfilling requirements across disciplines is coordinated primarily via meetings in-
volving many disciplinary experts. This may be guided by a system architect respon-
sible for balancing disciplines and achieving system compliance to specification. If
one discipline requires a change to meet requirements, they inform other disciplines

31

4. Process Development

and looping procedures on a larger scale are performed to converge to a solution.

The description of the current practice above is necessarily incomplete as a com-
plete description of the product development process at VCC in all its detail in
practice is beyond the scope of this text. However, it does serve to get a sense of
how multidisciplinary work is typically performed currently.

4.1.2 Software

Depending on the disciplinary expertise area, interviewees use different software
to perform simulation and analysis. MSC Nastran is used for NVH, Abaqus for
durability, and LS-DYNA for crashworthiness. Software for optimization is Altair
OptiStruct, 3DS Tosca, and Nastran SOL 200. One respondent report taking a
course in Simcenter HEEDS. Some respondents report having used modeFRON-
TIER, although most have not.

4.1.3 Optimization Maturity

The level of experience with optimization within the sample group varies. Some
interviewees reported no optimization experience and forwarded it to more expe-
rienced colleagues, while one interviewee, holding a Ph.D. related to optimization,
has performed a DoE involving two disciplines and a cost model.

While individual interviewees have experience in size, shape, and topology opti-
mization, the general view is that optimization adoption could be improved within
the organization.

4.1.4 Hindrances of an MDO Process

Those familiar with MDO are asked what reasons exist for it not being more widely
used. The following perceived and undesirable features are cited (quotes are para-
phrased):

e “MDO is time-consuming to set up and run.”
— Especially with crashworthiness simulation as this is typically the most
computationally costly simulation type.

e “MDO is complex to implement.”

e “Disciplines may use different models and the same mesh may differ in part,
node, and element numbering between disciplines.”
— This makes mesh parameterization across disciplines difficult.

o “Nonlinearities, primarily in crashworthiness, makes some simulations unreli-
able.”

— This issue is not exclusive to MDO but rather a wider issue with crash

simulations both due to numerical issues in FEM and inherently unstable

behavior of certain automotive designs caused by bifurcations. The latter

32

4. Process Development

may be the most common reason for scattering in crash simulation results

[67).

o “Many requirements need to be considered, perhaps too many for MDO to be
effective within an acceptable time frame.”

4.1.5 Desirable Features of an MDO Process

Respondents report the following perceived opportunities and desirable features of
MDO (quotes are paraphrased):

o “In general and as far as feasible, MDO should be easy to employ and integrate
well with existing software.”

e “It is more important that MDO can be used as a tool to learn more about
the design and how it can be improved rather than as a procedure resulting
directly in a final design.”

» “High automation is desirable at a late stage of the development of an MDO
workflow to increase efficiency.”

4.2 Process Implementation in modeFRONTIER

The software modeFRONTIER operates through a node-based GUI, where input
nodes are used to modify desired input files for the simulation. A simplified example
is depicted in Figure 4.1.

“hedulingstart [MOGAA] nput_Template SH_Shell_Script Exit

Figure 4.1: Schematic workflow with a selection of nodes used in modeFRONTIER
for this implementation.

The process flow is controlled by “Scheduling Start node” and the integration be-
tween modeFRONTIER and other software can be controlled, e.g., directly via spe-

33

4. Process Development

cific “CAE node(s)” or by using “SH Shell Script node(s)”. In this case, shell script
nodes were used since they are not bound to a specific type of simulation or discipline.
A generalized version (due to confidentiality) of the script code used within the shell
script node is provided in Appendix B. Finally, output nodes are used to extract
desired results which modeFRONTIER automatically creates into a design table for
further analyses to be performed. Although the process implementation changes
somewhat depending on the problem formulation, which disciplines are used, and
the number of load cases for each discipline, an illustration of the modeFRONTIER
setup is depicted in Appendix A.

Each time a design from the space-filling DoE is evaluated, a loop is run to evaluate
responses at that point. This process repeats until all design points in the DoE have
been evaluated, after which other steps in the process, as detailed in Section 4.4, are
performed. Beginning with a point in the DoE that corresponds to a set of design
variables, a shell script is started for each discipline or load case, see Figure 4.2.

modeFRONTIER
loop

Iterate until all design points have been evaluated

Bash shell script

A

1
1
1
’ Send simulations : - . .
Select DoE design i ;) Wait dynamically for Extract output || Store responsesina
point 0 mstru_ctlons to simulations to finish responses | table
I computing cluster 0
! S { ______ .
Extract
results from
META using
Python script

'y

Head impact
—— simulation using
LS-DYNA

Modal simulation

—)
using MSC Nastran

Parallel
computing

Figure 4.2: Schematic workflow chart of modeFRONTIER loop with associated
scripts and subprocesses.

The script parallelly starts all simulation runs by sending instructions to the various
software (in this case LS-DYNA and MSC Nastran). While the simulations are run
on parallel computing clusters, the script dynamically waits for simulation comple-
tion by checking log files at a specified interval using custom code. In the case of
head impact, an additional script, in this case, a Python script, is used to run a
series of functions in META and write responses to an output file. The script waits
for this process before completing and storing the responses in a modeFRONTIER
table before iterating the loop with the following design point in the DoE.

A notable benefit with the setup, see Appendix A, is that multiple simulations

34

4. Process Development

can run in parallel, thus reducing total time for simulation as compared to a setup
that runs simulations in series. Time is also saved by the custom code dynamically
checking for simulation completion. Furthermore, a single “Input Template” node
for each discipline is used to ease implementation with a new problem.

4.3 Development Problem

As stated in Section 3.4, a simplified geometry with predictable and stable responses,
which need not approximate any real component, is used to develop and illustrate
the MDO process. See Figure 4.3 for the geometry, henceforth called “Development
Geometry” or DG. Note that shell, rather than volume, elements are used in this
model due to it being a thickness-based optimization on mesh level. The compart-
ments of the geometry are to give predictable responses for both crash and modal
simulations.

Figure 4.3: Shell mesh of Development Geometry annotated with head impact
point P1.

Load cases and responses for the DG:

e Load case P1 with head impact responses as measured by maximum accelera-
tion amg, |G| and maximum acceleration under a 3 milliseconds time interval
Qelipsms |G, see Figure 2.1.

o Modal response as measured by the eigenfrequency for the first mode f0qe1
[hz].

« Mass m [kg] as extracted from the mesh model.

A head impact load case is illustrated in Figure 4.4.

Pl

Figure 4.4: Side view of Development Geometry under crash load case P1. Im-
pact is at an angle . Boundary conditions are set as fixed in all translations and
rotations, the same as for the modal analysis.

35

4. Process Development

One possible problem formulation is described in equation 4.1 with mass m as a
function of design variables x is minimized subject to the constraints as listed above.

min m(x, p)

subject to

91,P1(X,P) — Amaz < 0 [G]
92,,1(X, P) — Actipams < 0 [G]
93(%, p) — finoder < 0 [Hz]

by < x; < b, [mm]

The vector x contains n variables x; where ¢ = 1,2,--- ,n. The vector p contains
parameters that are held constant during the optimization, e.g., Young’s modulus
and other material properties. The functions g1, g2, and g3 are the true response
functions as approximated by metamodels. Vectors a,qz, @ctipsms; fmode1 are vectors
with the dimension n x 1 and all values in the matrix are identical. The design
variables are bound between upper and lower bounds, b, and b; respectively. No
specific values are given for parameters, constraints or bounds as the example is
illustrative.

The DG has been used in the development of the MDO process and is used in
the current chapter to demonstrate aspects of the process for demonstration clarity.
It may also be noted that the material properties used in the model approximate
that of mild steel. However, this is of limited relevance as the model is, as stated,
used simply for illustrative and development purposes.

4.4 Proposed Process

The proposed MDO process that has been developed in the “MDO process development”-
stage, see Figure 3.1, is presented in Figure 4.5. It takes the pre-optimized concept
and requirements, including objective(s) and constraints, as inputs and outputs an
optimized concept. Additional inputs in terms of choices along the process depend-

ing on the application are also required. However, this is explored in the below
sections for clarity.

36

4. Process Development

Requirements Pre-optimized concept +———

Problem

Modify concept

formulation

Variable selection
(parameterization,
DoE and variable
screening)

and/or problem
l formulation

DoE and
metamodeling

Increase DoE size
and/or change
metamodel

Acceptable
metamodel
error?

Metamodel-based
optimization

Feasible
solution
exists?

yes

Validation at
optima

CAD interpretation

|

Optimized concept

Figure 4.5: Flowchart of the MDO process.

h

no

37

4. Process Development

4.4.1 Problem Formulation

Problem formulation involves the setup of objective(s), design variables, constraints,
parameters, and design variable intervals to serve as a mathematical representation
of the optimization problem and its constituent parts. This formulation must con-
sider the structure of the MDO process as formulations differ between architectures
by definition, see Section 2.6.2.

The primary consideration is whether the problem formulation for the proposed
process is single- or multi-objective (i.e., SOO or MOO). The proposed workflow
allows the user to switch between these objective types with relative ease by chang-
ing node types in modeFRONTIER. Intervals of the design variables must also be
defined. Limitations can be imposed by, for instance, volume, manufacturing, or
cost constraints. Exploration outside the “practical” interval may be beneficial to
identify limiting factors, e.g., a manufacturing technique that only allows casting
down to a minimum thickness t,,;, while the optimizer is t* < t,,;, when the design
variable interval is broadened, thus indicating that another manufacturing method
may be considered.

4.4.2 Variable Selection

A selection of a limited number of features to be varied under the optimization is
necessary to keep DoE size at a feasible level. This necessitates the use of parame-
terization. In the context of sizing optimization of an FE mesh, this means to select
groups or “clusters” of elements in the geometry, consisting of shell elements, which
thicknesses are varied during the optimization. In this work, parameterization is
performed on the mesh in the pre-processor ANSA by grouping sets of elements.
After the initial selection, a variable screening is undertaken to determine the sta-
tistical contribution of each variable to the response(s), thus making it possible to
proceed with the most impactful variables.

Parameterization Approaches

Practically, the parameterization may be performed either on CAD- or mesh-level.
The former step may introduce issues with automatic meshing, while the latter may
be less flexible. Parameterization at the mesh level is used in this work. Thickness
can then be described parametrically, as in by a parameter in a DoE. The parame-
terized areas can be chosen via a process of iterative sensitivity analysis where the
geometry is split into successively smaller areas in regions with a high contribution
to the total variance. This approach has been demonstrated in previous work in
sizing optimization [68]. The benefits of this approach are that: (1) the selection is
more likely to result in a set of relatively sensitive areas than an ad hoc selection and
(2) a greater intuitive understanding of the system can be gained from narrowing in
on increasingly sensitive areas even before running the MDO. Alternatively, rather
than running multiple sensitivity analyses with successively decreasing parameter
areas, a single parameterization of the geometry can be performed by fundamental
disciplinary knowledge and previous studies of the component under optimization

38

4. Process Development

[9]. This approach is arguably less rigorous; however, it may benefit from being
quicker when previous knowledge exists.

Regardless of approach, an important aspect to consider in the parameterization
and the subsequent variable screening process is the number of variables, also called
parameters in this context, to include when proceeding to space-filling DoE(s) for
metamodeling. There exists a fundamental trade-off between resolution (i.e., the
number of parameter areas in the geometry) and computational expense since both
are functions of parameter count but with opposite signs, see Figure 4.6. When the
number of parameters is low, results have limited applicability. When the number
of parameters is high, the computational expense may be unacceptably high. The
optimal number of parameters is located between these extremes, but it is difficult
to ascertain where, since the usefulness of results is hard to quantify. For practi-
cal purposes, modeFRONTIER practitioners recommend 4-6 DVs as the optimum
interval for metamodeling and a maximum of 10 DVs [37]. This is the number of
variables, which are the outputs of the screening process.

Low resolution High resolution
- >
Low computational expense High computational expense

»
>

Amount of parameters

Figure 4.6: Parameter continuum between undesirable extremes.

Screening

Once an initial parameterization has been performed, a statistical DoE, as described
in Section 2.4.1, is run and subsequently analyzed to filter out variables with a low
contribution to the response(s). Many models have been proposed and demonstrated
for variable screening, see Cho et al. [69] for a survey. Recognizing the need for
ease-of-use as identified in Section 4.1, this work uses and recommends the built-in
sensitivity analysis tool in modeFRONTIER, which uses a proprietary SSANOVA
algorithm. This statistical modeling algorithm can estimate the contribution of each
variable to the global variance [70].

Subsequent filtering of cumulative effect at, for example, 95% screens out the vari-
ables that together contribute to less than 5% of the total response. Alternatively, a
maximum number of design variables can be set, e.g., 4-6 as per practitioner recom-
mendations, which filters out variables that contribute less to the total variance than
the 4-6 variables that proceed to be used for metamodeling. The latter approach
requires that the filtered variables do not exceed some acceptable level of contribu-
tion and therefore, the former is to be recommended. The filtered-out variables can
be set at a nominal or minimum value (or potentially maximum value depending
on the context). If more variables than what can be allowed for a sufficient MDO
run-time are left after screening, the parameterization may need to be reconsidered.

39

4. Process Development

Illustrative Example

An illustrative example using the Development Geometry is shown below. A single
crash load case is used as per Eq. 4.1, for clarity. However, the principle is the same
if more load cases are used. See Figure 4.7 for initial parameterization, Figure 4.8 for
a sensitivity analysis based on a Plackett-Burman (n = 8) DoE and modeled with
SSANOVA. With a limit of 5% for cumulative effect for each response, one variable;
“small_box_ 17, can be filtered out and set at as a constant, e.g., at the minimum
value. Parameter resolution then increases in the next iteration and the non-sensitive
area is screened out, see Figure 4.9. Observe parameter name changes from Figure
4.7 to Figure 4.9. As for the initial parameterization, a more refined iteration is
subjected to a sensitivity analysis using P-B (n = 12), see an effect bar chart in
Figure 4.10. Again, using a cumulative effect limit of 5%, the following parameters
can be screened out: “boundary side”, “impact_side”, and “inner side 17, thus
reducing the number of design variables from 8 to 5. The screened-out parameters
can be set as constants and are then transferred from the x vector to the p vector
before optimization is performed.

boundary_box

middle_box

impact_box

small_box_1

small_box_1

Figure 4.7: First parameterization of DG, n = 5.

40

4. Process Development

©

o

mass max
0 — 1.0 _—
(a) (b)
8 o 08 a—
6 06
4 04
2 02
0 - 00
- = = = . o o x = = . o
8 2 3 g 3 g J N
= | = o) | \ 9 3] S
fan 31 K = 9 3] K ol = =
@ @ =] = = @ =] @ = =
b= a b=l © © a = B @ @
5 £ £ £ £ £ £ 3 £ £
Q - [z 2] Q 0 5]
0 £
clip3ms mode1
n _ 0 i
0 —— 0 d)
8 ~ 08 5
o
6 / 0.6
Y
4 04
2 02
0 0.0
- % < ot . % x % = o
[s] 8] [s] Q Q Q
=] 8 3 3 3 4 8 8 3 3
W = 0 0 t;l ead 134 K0 .ul _(_1|
o @ !) @ @ @ k= = =
p=] b= @] a 2 =3 p=] @ @
3 5 £ £ £ 5 E £ £ £
Q o 0 - Q “n 2]
0 o

Figure 4.8: Effect bar charts for the first parameterization with four responses:
(a) mass, (b) maximum acceleration a,q,, (¢) clip3ms acceleration aipsms, and (d)
eigenfrequency of the first mode f,04e1-

outer_sides_1

boundary_side

sliced_sides_1

inner_sides_1
(constant)

outer_sides_2

sliced_sides_2

inner_sides_2

outer_sides_3

impact_side

Figure 4.9: Second parameterization of DG, n = 8. Note that boundary_ side,
sliced_sides_ 1, and sliced_sides 2 are completely or partially obscured.

41

4. Process Development

mass max
O — 1 (b) —
08T o 0.8
0.4 0.4
09 "
- e — - | S —
i . ol] o W W o . = ™ ol E . W ol ol W
« w w w =2 2 o o o « « o« p= o o 2
W i) W W @ @ W W @ @ W W] W W @
) =) h=) h=) + = o pe) p=t h=) =)) = p=l p=l .
® ® ® ® o - ® * ? o ? o < ? ? o
]] | |]]
— — — — [+ % o — [he) [, - Qo
£ £ g g £ £ b B £ T B 2 = N £ £
5 =] = 5 = a o o =] o 5 a € = =
Q [} [} — = = [+] — L— Q = Q
0 w 2]] [z} 0
clip3ms mode1
) () i : U (d) =
08 08
06 06
04 04
0o 09
. EmpEn S n

o
o
_3
side
.
5
_3
N
y_side
s
A

impact_side

uter_sides
sliced_sides_"
uter_sides_2
undary
impact_side
uter_sides_”
sliced_sides
inner_sides
sliced_sides_"
uter_sides
uter_sides_2
sliced_sides
undan
uter_side
inner_sides

bo
bo

Figure 4.10: Effect bar charts for the second parameterization with four responses:
(a) mass, (b) maximum acceleration G, (¢) clip3ms acceleration @ipsms, and (d)
eigenfrequency of the first mode f,,0de1-

4.4.3 Metamodeling

The proposed metamodeling process is in general as described in Section 2.5. The
following text expands on the motivation and details for consideration. In particular,
aspects affecting the metamodel selection are discussed and a parametric study of
metamodel error as a function of DoE size was undertaken.

Motivation for Metamodels

Beyond the reasons why metamodels are used in optimization, as stated in Section
2.5, their use in the automotive industry has also been suggested by Ryberg, Béck-
ryd, and Nilsson [6], [9], [61]. Furthermore, the authors of this thesis agree that if
metamodels can be constructed with acceptable error, they are recommended also
due to the increased flexibility. For example, many optimization algorithms can be
employed on the metamodel without having to run extra simulations. Decreased
computational cost for cases where computationally heavy simulations are required,
e.g., crash analysis, as compared to direct optimization, is also a significant benefit.
As mentioned, metamodel-based optimization also has noise-reducing properties,
which can be beneficial, especially for crash analysis where the response(s) can be

42

4. Process Development

noisy.

Cases when metamodel-based MDO is not recommended are where the above as-
sumptions do not hold or in cases where bifurcations make results highly nonlinear
and unpredictable, see interview findings in Section 4.1.4. Crash load cases domi-
nated by bending do not have a tendency to bifurcations [52] but designs that are
prone to bifurcation must be avoided if optimization is intended to be used as this
is not exclusively an issue with metamodel-based optimization.

Metamodel Algorithm Selection

Several factors influence the choice of metamodel algorithm: the underlying phe-
nomenon being modeled and whether its response is linear or nonlinear, response
noisiness, required DoE size and uniformity, and allowable time for training. In
general, practitioners are advised to start with simple metamodels, e.g., low-order
polynomial regression to survey trends and behavior in low-resolution [37]. However,
as covered in Section 2.5.1, more complex behavior cannot be captured by low-order
polynomials and higher-order polynomials are costly to train. Since many systems
in engineering exhibit complex relationships between inputs (DVs) and outputs (re-
sponses), more advanced metamodels, e.g., Kriging or RBFs, can be required to
capture this behavior. In general, this work uses RBFs to model low-noise responses
due to their lower required DoE size than polynomial regression. Kriging with a
noise parameter is used for noisy responses. Responses that are are known to be
linear are modeled with first-order polynomial regression.

Design of Experiment Size

Regardless of which metamodels are chosen, one significant aspect in the MDO pro-
cess is the size of the space-filling DoE, which will influence metamodel accuracy
and hence optimization accuracy. It has been suggested in the literature that a
sample size of 3n (excl. validation samples) constitutes the minimum for a crash-
worthiness metamodel when fitting using a variety of metamodel algorithms [71].
Although notably, this study concerned a full frontal impact case. Shi et al. [72]
confirms the 3n recommendation after testing up from n + 1 to 10n for a Subset
Selection Regression [73] and two RBF variants. Here the development geometry,
with 5 DVs and a problem formulation described in 4.4.2; is used to give a rough
idea of how DoE size affects metamodel error for two disciplines of varying linearity
and noisiness. Two polynomials (one first- and one second-order), Kriging and an
RBF are compared. Four sample sizes have been used: 3n, 5n, 10n, and 25n (again
excl. validation points). The validation sets varied between 15-20% for each sample
size. A ULH was used for both clip3ms- and f,,oq.1-models, see Figure 4.11.

43

4. Process Development

C|Ip3mS fmode1
0,25 0,05
<
0,2 0,04
5 5
c]
o 0,15 o 0,03
© =
2)
c 01 c 0,02 L)
© (] .
g ‘\:ﬁ - g Y.
0,05 e 0,01 o
~
e Sl B
______ °
0 0
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
DoE size (no. of training points) DoE size (no. of training points)
—&— 1st order polynomial 2nd order polynomial —— 1st order polynomial 2nd order polynomial
Kriging - - RBF Kriging - - RBF
©) (b)

Figure 4.11: Mean relative error as a function of DoE size in clip3ms and f,.0de1
for the Development Geometry. 1st and 2nd order polynomial regression, Kriging,
and RBF are compared for 3n, 5n, 10n, and 25n with n = 5 and 15-20% validation
sets for each respective DoE (excluded in DoE size on x-axis).

Since the validation sets of randomly chosen points of 15-20% of the total DoE size
corresponds to only a small amount of points, only the rough trend of Figure 4.11
is of importance. In both cases, barring outliers, the general trend is a strictly de-
creasing function with diminishing returns when the DoE size increases. However,
it should be noted that the results are dependent on geometry and load conditions.

With regards to the process as outlined in Figure 4.5, if the metamodel errors
are unacceptably high, DoE size can be increased to lower the error, or a different
metamodel selection may be made before proceeding to optimization.

4.4.4 Metamodel-Based Optimization

Once a metamodel has been chosen for each discipline and load case based on the
procedure described in the preceding sections, optimization algorithms are next ap-
plied to perform metamodel-based optimization. The selection of an appropriate
algorithm depends on several factors, e.g., whether the problem is convex or mul-
timodal, whether gradient information is available, if variables are continuous or
discrete, and what the allowable time for the optimization is. As suggesting a gen-
eral guide of which optimization algorithm is appropriate for each hypothetical case
is beyond the scope of this work, a brief discussion on what guided the optimization
algorithm selection in the present work follows.

The problem described in Section 4.3 is partly a nonlinear, multimodal system that
is run with discrete variables (in increments of 0.1) and metamodeled with surfaces
that have gradient information. Since the optimization is based on a metamodel, the
time for the optimization to converge is negligible to the required time to compute

44

4. Process Development

all points in the space-filling DoE. This allows the use of complex, nongradient opti-
mization algorithms with minimal computational cost. Therefore MOGA-II, which
is often computationally expensive in direct optimization, can be used. MOGA-
IT can efficiently optimize in both discrete and continuous variables using multiple
objectives [37], i.e., in MOO problems. However, one disadvantage is that this
algorithm can be challenging to tune manually, sometimes necessitating a trial-and-
error approach. However, modeFRONTIER offers an automated approach termed
“self-initializing mode” that takes several evaluations as input and sets remaining
parameter settings automatically.

If after optimization it is the case that feasible solutions to the design problem
exist, the next step in the MDO process is undertaken. However, if no such feasible
solution exists, either the problem formulation or the pre-optimized concept requires
modification. This assumes that previous steps of the process have been without
error, such that variable selection has not screened out too much variance or that
metamodels have too high errors.

4.4.5 Validation at Optima

While the metamodels are compared using simple cross-validation in the metamod-
eling stage, see Section 4.4.3, validation at every optimum point x* can also be
undertaken. This is to check the local accuracy at that point to avoid a spurious
optimum. Practically this is performed by running a simulation for every discipline
and load case at the point x* and comparing the responses to the responses given
by the metamodel-based optimization. If the error is unacceptable, the metamodel
algorithm is changed for another one, or it is kept and modeling parameters are
changed. Alternatively, the model’s training data set can be expanded, i.e., by in-
creasing the size of the space-filling DoE, as in previous process steps.

A further reason why validation at the optima is necessary is because simple cross-
validation points for assessing the error of the metamodels are randomly distributed
in the space. It can therefore be the case that the true maximum error between
the metamodel and the real response is higher than the measured maximum error
because the validation points which are used to calculate errors can be anywhere on
the multidimensional function as opposed to exactly at the point of true maximum
deviation. See Figure 4.12 for a schematic illustration for a single variable. The
same principle holds for multidimensional functions.

45

4. Process Development

True maximum error

N

Maximum cross N
validation error

\

Validation point
— Metamodel

= True response

\

Figure 4.12: Schematic illustration of true maximum metamodel error as compared
with maximum simple cross validation error.

Furthermore, the optimization may yield a point slightly outside constraints due to
local error in the metamodel. Even if the metamodel performance can be improved
by increasing the DoE size or changing the training parameters of the metamodel,
it is still possible that the constraint violation will persist. In these cases, a possible
solution is to adjust the problem formulation to impose more strict constraints and
then re-run the optimization and check for constraint violation again. Rather than
changing the actual problem formulation for the design problem, which is defined by
the engineering requirements, the constraints limits in the modeFRONTIER nodes
are offset to account for the metamodel error. There is to the authors’ knowledge no
easy way to determine the magnitude of this offset. However, since the metamodel-
based optimization problem can be solved quickly, several iterations for fine-tuning
may be considered affordable as compared to the DoE, which will require orders of
magnitude more time.

4.4.6 CAD Interpretation

As cautioned at the outset, see Section 1.1.3, MDO does not by itself provide a
finished design, at least not by the formulation discussed in this work. In addition
to constructing the MDO and making decisions throughout the process, engineering
intervention is needed to interpret the results of the MDO. A CAD realization of the
optimized mesh is made after analyzing the optimization results since the results
are typically not directly manufacturable, e.g., due to abrupt changes in thickness
for a thickness-based optimization.

It is, therefore, to some degree up to the design engineer what geometric features

should be used. For example, a thickness-optimized component to be cast may not
take the exact optimized thickness at each point but may potentially utilize rib

46

4. Process Development

structures at select areas, assuming the optimization results are interpreted as that
more material is needed in such areas to increase stiffness locally. However, the more
one deviates from the optimization results during the interpretation, the less useful
the MDO results become.

Subsequent to CAD realization, the geometry is meshed and tested against the
initial requirements and objectives defined at the outset. If requirements are not
met, some point in the MDO process needs to be reconsidered. Examples include
re-interpreting the CAD model, changing the parameterization, or more fundamen-
tally; modifying the underlying pre-optimized concept or reconsidering the problem
formulation. However, if the optimized and interpreted geometry meets the require-
ments, the MDO has been successful.

47

4. Process Development

48

O

Process Verification on an
Automotive Component

In this chapter, the MDO process as developed and described in Chapter 4 is applied
to a real design problem, namely the Center Stack Display Bracket (CSDB) prob-
lem. The two problem formulation variations that are used are presented, followed
by variable selection, metamodeling, optimization, and CAD interpretation as per
Figure 4.5.

Note that throughout this chapter, some absolute values (e.g., for constraints) and
figures of the component under optimization are omitted for confidentiality, relative
values are however presented that retain the magnitude of the results. The geometry
of the bracket is also not shown due to ongoing development.

5.1 Problem Formulation

A CSDB is subject to three crash load cases, see Figure 5.1, and a modal analy-
sis. During the verification stage of automotive interior development, many impact
points are tested. In this work, a selection of impact points has been chosen to
be used after discussion with crash experts for their representativeness. The im-
pact points are P1, P2, and P3 where a head impact is simulated on the CSD.
Eigenfrequency of the first mode is of interest as in Section 4.3.

Figure 5.1: Points of head impact on the CSD for load cases P1, P2, and P3.

49

5. Process Verification on an Automotive Component

Load cases and responses for the DG are similar to the development problem in
Chapter 4 with the exception of more crash load cases:

o Three load cases P1, P2, and P3 with head impact responses as measured by
Umaz |G] and auipsms [G], see Figure 2.1.

« Modal response fiode1 [hz].

o Mass m [kg] from the mesh model.

Formulation 1 (min mass) can be formulated as:

min m(x, p)

subject to

91,P1(X, P) — Apae < 0 [G]

92,,1(X, P) — Actipsms < 0 [G]

93,p2(X, P) — Aaz < 0 [G] (5.1)
91,p2(X, P) — Actipams < 0 [G]

gs, P3(X, P) — Az < []

96,p3(X, P) — Actipams < 0 [G]

97(%, P) — froder < 0 [Hz]
1.2 <z; <5.0 [mm]

where mass m, as a function of design variables x and parameter constants p (e.g.,
material properties), is minimized subject to constraints @z, Geipsms, and fiodel
while design variables can vary between lower bound 1.2 mm and upper bound 5.0
mm. Vectors amag, aclipams, and my,,, are vectors with the dimension n x 1 where
n is the number of design variables and all values in the matrix are identical.

Formulation 2 (MOO) can be formulated as:

min fclipSms,P3(X7 p)7 1/ff,model (Xa p)

subject to
91(X, P) — My < 0 [k
92,p1(X,P) — Amaz < 0 [G]
g3,P1(X, P) — Actipzms < 0 [G] (5.2)
Ga.p2(X, P) — Amaz < 0 [G]
g5.p2(X, P) — Actipams < 0 [G]
]

967P3(X7 p) Az < 0 [G
1.2 <z; <5.0 [mm]

where two objectives; ffmode1 (X, P) 1.€., eigenfrequency response is maximized (hence
the inversion) and fuipsms p3(X, P) i.e., clip3ms response, is minimized with respect
to design variables x under constraints similar to formulation 1, see Eq. 5.1. In
both formulations, the vector x contains n variables x; where ¢ = 1,2, . n, ini-
tially, n = 8. Minimization of clip3ms for P3 is chosen as an objective due to it

50

5. Process Verification on an Automotive Component

being the most difficult to lower as compared to P1 and P2 according to discussion
with crash analysis experts.

A multi-objective optimization (MOO) is used to explore the trade-off between the
responses that have the most difficult targets to meet. After optimization it has been
discovered that no constraints are active in Eq. 5.2 and hence MOO captures the
entire trade-off between clip3ms at point P3 and f,,.q4.1. Due to this, single-objective
optimization (SOO) formulations in which either of the aforementioned objectives

are optimized individually are unnecessary because their optima are found in the
Pareto front in the MOO.

5.2 Variable Selection

As mentioned in Section 4.4.2, there exist multiple strategies for deciding what areas
of the geometry are used as design variables for the subsequent optimization. In the
case of the CSDB, previous studies and engineering expertise guided the selection of
areas to be included in the sensitivity analysis as part of the variable screening. Al-
ternatively, a successive refinement of parameter areas through repeated sensitivity
analyses could have been performed as illustrated in Section 4.4.2. In this applica-
tion, ten parameters, each representing an area of the shell mesh, were selected. An
assumption of symmetry along the XZ-plane, i.e., the plane which separates the left
and the right side of the car, is made for several areas such that a single parameter
controls the thickness on two symmetrical areas of the design. This was done to
increase resolution and because the impact points are primarily on the left side, a
further discussion follows in Section 6.3. Thicknesses were varied in these areas.

A Plackett-Burmann DoE with 12 runs due to the ten parameters was used to
populate the experimental domain, after which an SSANOVA sensitivity analysis
was run. The first iteration with screening for 86.5% contribution to the total vari-
ance, i.e., a 13.5% threshold, resulted in 5 DVs across all disciplines and load cases.
However, after proceeding with this selection, optimization resulted in exclusively
infeasible results (i.e., violating constraints) when using a MOGA-II optimization
for the “min mass” formulation, see Eq. 5.1. More design variables needed to be
included at the cost of metamodel DoE size to capture more contribution to the
total variance.

A second iteration of the variable screening was performed. Setting a threshold
of 9.5% resulted in 8 DVs, see Table 5.1.

51

5. Process Verification on an Automotive Component

Table 5.1: Contribution to response with a 9.5% threshold. Note that parameter
2 and 6 are below the threshold and thus screened out. Total indicates the amount
of variance that is kept for each response after screening.

Var. clip3msp, clip3msp, clipd3msps fode1 @Qmaz,p1 Qmaz, P2 Qmaz,P3

1 0.4% 6.8% 7.6% 45.1% 1.6% 8.8% 39.3%
% 0.6% 2.6% 1.7% 7.6% 0.0% 8.3% 2.3%
3 0.6% 13.1% 10.0% 4.4% 0.3% 7.0% 6.1%
4 3. 7% 74.6% 1.2% 0.2% 0.4% 69.5% 3.5%
5 0.2% 0.0% 0.7% 3.4% 0.2% 0.0% 11.6%
6 0.1% 0.6% 2.8% 0.0% 0.0% 0.0% 9.1%
7 0.6% 1.6% 13.1% 41% 0.0% 1.8% 0.5%
8 0.0% 0.0% 3.7% 3.2% 0.1% 1.5% 19.1%
9 93.7% 0.6% 38.2% 31.9% 97.3% 0.9% 0.1%
10 0.1% 0.1% 21.2% 0.1% 0.0% 2.2% 8.4%

Total 98.4% 96.8% 95.5% 92.4% 99.9% 91.7% 88.6%

Although outside the optimal scope of 4-6 DVs as recommended by practitioners,
see Section 4.4.2, a larger DoE and thus a longer computation time was in this case
acceptable for the purposes of attempting to meet constraints. Optimization then
proceeded with these 8 DVs.

5.3 Metamodeling

The same metamodeling algorithms used in Section 4.4.3, polynomial regression,
Kriging, and RBF for linear, noisy, and noise-free responses respectively, were
trained on a data set with a sample size of 6n for 8 DVs. 10n or above was considered
excessive due to already acceptably low errors. In general, the trend illustrated in
Figure 4.11 likely holds, but it is difficult to give a general recommendation of what
DoE size to favor because it depends on the level of acceptable error and level of
nonlinearity and noise in the responses.

As for the Development Geometry (DG), metamodels were compared using mean
relative and maximum relative error measures (termed RE,,c., and RFE,,., here
to avoid confusion) as calculated from a simple cross-validation data set with 15%
of the ULH DoE being validation points. The training set consisted of 46 sample
points. See Table 5.2 for metamodel performance for the selected metamodels.

52

5. Process Verification on an Automotive Component

Table 5.2: Selected metamodels, mean relative error, and maximum relative error
measures for each response.

Response Metamodel RE,,... RE,...
clip3msp; Kriging 2.70% 7.15%
clip3msps Kriging 3.46% 7.55%
clip3msps Kriging 3.76% 7.41%

Jmode1 RBF 0.34% 1.41%
Amaz, P1 Kriging 0.59% 2.10%
Umaz, P2 Kriging 5.40% 10.08%
Armaz,P3 Kriging 2.84% 7.718%

If lower metamodel errors are desirable, a DoE size larger than 6n is recommended.
For the present purposes, the metamodels are considered to perform acceptably well,
so the optimization proceeds with the set of metamodels.

A linear metamodel (first order polynomial regression) was trained for the mass
response since modeFRONTIER requires a metamodel for each output to run a
metamodel-based optimization; however, it is omitted from in Table 5.2 due to the
perfectly linear relationship between mass and thickness.

5.4 Metamodel-Based Optimization

For reasons described in Section 4.4.3, the MOGA-II optimization algorithm was
used to perform metamodel-based optimization in both problem formulations. The
optimization was completed in under 10 seconds even for over 1000 evaluations due
to running on the metamodels. The resulting Pareto front for the MOO formulation
is shown in Figure 5.2. The point denoted “PP1” refers to a point on the Pareto
front which was considered to be a “good” trade-off, see Figure 5.2.

53

5. Process Verification on an Automotive Component

¥
=]
«F A
3 Target area
E i
@ e
2 :
e :
Pareto front
; PP1
§ \f_ﬁ@"
Reference
clip3ms
1:arge'[clip3ms -

Figure 5.2: Pareto front from metamodels in relation to the reference and the
targets on max-min MOO formulation (f,,,4e1 is maximized and clip3msps is min-
imized) illustrating the trade-off between clip3ms and modal performance. Values
on axes have been removed for confidentiality.

The above trade-off curve is based on the metamodels which are known to have
varying error throughout the response space. Therefore, a small set of points (in
this case five) are picked from the Pareto front and compared with real simulations
to investigate the error at optimum. The points perform similarly on clip3msps and
fmode1 and hence the point with the lowest error in critical responses is picked, here
called “PP1”. See Table 5.3 for the error (difference between response values as
given by the metamodel and by the real optimization) at optimum for each response
at the picked point.

Table 5.3: Response error between metamodel and real simulation at optimum for
a selected point on the Pareto front. Sign denotes if the real response value is higher
or lower than the metamodel response value.

Response Error,;oo
clip3mspy -0.60%
clip3ms ps 2.00%
clip3msps -3.30%

fmodel ‘060%
Qmazx,P1 -0. 10%
Amaz,P2 270%
Qmaz,P3 —330%

o4

5. Process Verification on an Automotive Component

After validating the optimum points for the MOO and the min mass formulation, the
validated values are benchmarked against a reference, in this case, the pre-optimized
design, see Table 5.3.

Table 5.4: Comparison between problem formulations as compared to a reference
benchmark, i.e., the pre-optimized design. Response improvement (marked in green)
or deterioration (marked in red) is compared to the benchmark reference value.

clip3msp;, clip3msp, clip3msp; 0001 Mass &pmerprl Amaz,P2 Amaz,P3

Benchmark Ref Ref Ref Ref Ref Ref Ref Ref
minimize mass 30.30% 5.71% -6.12% 580% 20.92% 5.63% 0.30% -4.89%
MOO 43.80% 11.75% -6.14% 6.36% 35.36% 6.69% 7.26% -3.63%

Neither formulation (min mass and MOO) has feasible solutions such that clip3ms
for P3 and f,,04c1 are within the requirement, see “target area” in Figure 5.2. How-
ever, the MOO formulation resulted in an improvement of both as compared to the
benchmark from the selected point on the Pareto front: circa 6% lower clip3ms at
P3 and 6% higher f,,0qc1. The min mass formulation had similar performance im-
provement while less mass was added, see Table 5.4.

All constraints in the MOO formulation were satisfied; however, as shown in Figure
5.2, no point in the Pareto front is in the target area while constraints are respected.

5.5 Optimization Infeasibility

In optimization, the term “feasibility” is used to denote whether there is a solution
to the optimization problem. Using the above formulation, see Eq. 5.1, it was shown
that no feasible solution exists. The second formulation, see Eq. 5.2, technically
has feasible solutions since no constraint is violated. However, it fails to meet the
targets and can hence be described as infeasible. There are several reasons why the
optimization may fail to arrive at a feasible design, these are briefly explored in this
section.

Fundamentally, the design space may be too restrictive to allow the optimization to
reach some set performance target because the target lies outside the scope of the
optimization. For instance, the interval bounds of the design variables may be too
narrow, or the parameterization may be restrictive in that not all relevant geomet-
rical features can be optimized simultaneously. In the case of fine-tuning a mature
component in the later stages of development, for instance, by using a thickness-
based optimization like in this work, much of the geometry is already defined, thus
allowing less design freedom in the optimization process, this may be termed geom-
etry lock-in.

It may also be the case that components outside the system under optimization
influence the system in a way that unexpectedly limits its performance. If, for in-
stance, some components outside the system under optimization interact in a way
that places a limit on the system, no amount of optimization will result in a solution

95

5. Process Verification on an Automotive Component

that satisfies some optimization formulation. Performing the optimization may still
be useful because it provides insight into how far the current design can be pushed
under the limits of the optimization. If the assumptions imposed by the parameter-
ization and optimization formulation are appropriately set, and a feasible solution
is nevertheless not found, issues may be caused by (1) the concept being optimized,
(2) some interaction or component outside the system under optimization.

In the case of the CSDB, no design exists within the feasible space, also called
the target area in Figure 5.2. Therefore, a second, modified optimization was run.
Since some design variables were at their upper limit in many Pareto designs, their
upper, as well as their lower bounds were changed to cover a larger area. The upper
bound was increased by 40% while the lower bound was decreased by 17% (i.e, to
7 and 1 mm respectively). The selection of these particular values was guided by
disciplinary experts who considered manufacturing limitations.

It was also discovered that a nearby component, not within the scope of the op-
timization, limited crash performance significantly. The mechanism was that this
component interacted with other components in the IP assembly in an unexpected
way during crash simulations, which effectively placed a lower limit on clip3ms.
The complicating aspect that head impact simulations are performed on the level
of a large instrument panel assembly with many components obfuscated the mecha-
nism by which clip3ms-performance was limited. This is the reason why the Pareto
front in Figure 5.2 is located entirely to the right of the clip3ms target, which in
combination with current modal performance motivated additional investigations.

5.6 Second Multi-Objective Optimization

An additional run-through of the MDO process with extended DV bounds and with
changes to the associated component that limited clipdms-performance was per-
formed. The MOO formulation, see Eq. 5.2, but with 1.0 < z; < 7.0 [mm)] and with
n = 10 for x. Previously screened-out variables contained in the p vector are now
in x.

All ten design variables were used in a space-filling DoE to train the metamod-
els. No variable screening is thus performed to capture all variance. The reason
for omitting the variable screening is to identify how close to the target area the
optimization can get. An approximately 6n run with a 15% validation set was used
to train a set of metamodels with the following fit performance, see Table 5.5.

56

5. Process Verification on an Automotive Component

Table 5.5: Selected metamodels and MRE measures for each response for the
second MOO.

Response Metamodel RE,.... RE,...
clip3ms py Kriging 4.77% 10.25%
clip3mspy Kriging 8.28% 18.77%
clip3msps Kriging 6.39% 10.48%

fmode1 RBF 0.83% 2.16%
Amaz, P1 Kriging 1.06% 2.50%
Umaz, P2 Kriging 8.15% 14.34%
Amaz. P3 Kriging 523% 1.17%

The average errors are higher than in Table 5.2 which may be due to the DV bounds
extending into a more nonlinear area or due to the additional parameters, i.e., 10
instead of 8 as in the previous MOO. For the purposes of exploring the design space
and testing the limits of the current concept and optimization setup, the errors
are considered acceptable. Lower errors could be obtained by running a DoE with
a larger size as per the general trend described in Figure 4.11. An MOO with a
formulation like Eq. 5.2, except the DV bounds, results in the Pareto front as
shown in Figure 5.3. The new reference termed “2nd reference” is the pre-optimized
concept run in the updated assembly without the complication with an associated
component. A point on the Pareto front termed “PP2” is also picked according to
the previously described procedure, see Section 5.4.

-
«F A
3 Target area
= '
B e st
o0
e !
PP2 E Previous
| Pareto front
. { | PP1
¢ Pareto front | \rﬂgﬁ”
| Previous
2" reference ; reference
o 5 :
target clip3msp3

clip3ms

Figure 5.3: Second Pareto front as compared to the previous, see Figure 5.2,
after changing DV bounds and fixing a complication with an associated component.
Values on axes have been removed for confidentiality.

As is evident in Figure 5.3, the second Pareto front is closer to reaching the per-

57

5. Process Verification on an Automotive Component

formance targets for the most critical metrics as compared to the previous Pareto
front, see Figure 5.2. However, all points on the Pareto front lies outside the target
area, indicating that a feasible solution has not been reached with the current op-
timization setup or the current pre-optimized concept but that the former is closer
than the latter. The target for clip3ms at P3 is however met, indicating that it was
limited by the previously described component outside the scope of optimization.

From analyzing the optimization data, it can be ascertained that the constraints
regarding maximum and clip3ms acceleration for point P1 are active, see Figure
5.4. The infeasible results, shown in yellow, against the feasible results, shown in
green, indicate that crash performance is primarily limited by P1. A few points in
the scatter plot, see points marked in yellow in the bottom left, are infeasible due
to P2-constraints.

max,P1

a_max

target

target clip3ms,,

clip3ms

Figure 5.4: MOGA-II crash performance results for second MOO at P1. Values
on axes have been removed for confidentiality.

Like in Section 5.4, the error at optimum (PP2) is investigated by comparing the
metamodel responses to a real simulation using the optimizer thicknesses, see Table
5.6.

58

5. Process Verification on an Automotive Component

Table 5.6: Response error between metamodel and real simulation at optimum for
a selected point on the Pareto front. Sign denotes if the real response value is higher
or lower than the metamodel response value.

Response Error
clipdmspy 3.70%
clipdmspy 4.70%
clip3msps -0.10%
fmodel ‘130%
Amaz,P1 —150%
maz, P2 6.80%
Umagz, P3 1.30%

The errors between the metamodels and the validated point PP2 for each response
are deemed acceptable. Furthermore, as with the first MOO, all constraints are
respected. The validated values, i.e., from real simulations, are compared against
the new reference, see Table 5.7.

Table 5.7: Second MOO as compared to previous problem formulations. Response
improvement (marked in green) or deterioration (marked in red) is compared to the
benchmark reference value.

clip3msp, clip3msp, clip3msp; f00e1 mass amae,P1 Amar,P2 Qmaz,P3
Benchmark (2nd reference) 2nd Ref 2nd Ref 2nd Ref 2nd Ref 2nd Ref 2nd Ref 2nd Ref 2nd Ref
2nd MOO 49.93% 12.57% -3.28% 7.55% 7247% 5.98% 21.17% -4.92%

While several responses show worse performance than the previous optimization
attempts compared to their appropriate reference, see Table 5.4, all targets (except
modal) are met. Compared to the reference, clip3ms at P3 is lowered by circa 3%
while eigenfrequency at the first mode is increased by over 7%.

Modal Theoretical Maximum and Global Information

Since the more extensive, second MOO also failed to meet the modal requirement,
a test was conducted to ascertain the limits of the component under optimization,
i.e., the CSD bracket.

Since eigenfrequencies are functions of stiffness according to Eq. 2.1, a manual
adjustment of stiffness can determine the limit of the component with respect to
modal performance. The theoretical maximum eigenfrequency of the first mode of
the bracket was investigated by changing the Young’s modulus of the material in
the FE modal by a factor of 100 for the pre-optimized concept. It was discovered
that the limit was under the set target and only 9.6% higher than the benchmark,
as compared to circa 7.6% with the optimization, see Table 5.7. An improvement of
only 2 percentage points beyond the optimization results is therefore theoretically
possible, meaning that the modal target cannot be reached without modification to
other components than the CSDB.

59

5. Process Verification on an Automotive Component

The above results indicate the need for global information about a system and
the inherent limitations of optimizing a single component in a larger system affected
by many other components and their interactions. The difficulty of finding and
the importance of including global information in global optimization has long been
noted, e.g., in the article aptly named Global Optimization Requires Global Informa-
tion by Stephens and Baritompa [74] from 1998. Further work with differing scope
is therefore needed to meet requirements regarding modal performance.

5.7 CAD Interpretation

As noted in Section 4.4.6, MDO does not output a finished design but rather results
that need to be interpreted. As discussed in Section 4.4.6, manufacturing limitations
will impose changes to the optimized mesh, e.g., abrupt changes in thickness over
the geometry need to be smoothed. A level of ambiguity in the CAD interpretation
process is inherent, and therefore multiple CAD realizations can be created and
compared if time allows. A detailed CAD realization is not made in the present case
as it is outside the scope of the thesis.

60

O

Discussion

This chapter presents considerations of MDO methods from an organizational-,
societal-, ethical-, and ecological perspective. Limitations of the study and the
MDO process are both provided as an extension to the initial limitations listed in
Section 1.3. Finally, project recommendations to improve the proposed process are
presented.

6.1 Organizational Considerations

As described in the needs assessment in Section 4.1, the general perception of MDO
seems to be that it is time-consuming, complex, and rigid (i.e., not dynamic to
modifications to the system). Moreover, from the MDO implementation in mode-
FRONTIER it was discovered that organizational hindrances of utilizing MDO can
also be related to a lack of FE model standardization for the involved disciplines.
The implementation of MDO can be relieved with common FE models, if possible,
shared across disciplines using standardized interfaces and numbering. Furthermore,
large-scale utilization of MDO introduces difficulties in deciding what design vari-
ables to select, seeing as different disciplines aim for different objectives with their
design.

Different priorities for the MDO method arise from when in the product devel-
opment process it is meant to be applied. Early implementation typically faces
difficulties related to frequent, drastic design modifications and also sudden require-
ment changes. Both aspects complicate the timing for when MDO results need to be
provided to be useful, as current designs rapidly become outdated in the early stages
of development. Thus, MDO implementation at an early stage in the development
process should be focused on creating a process that allows for fast optimization
loops rather than providing high-accuracy results. On the other hand, if MDO
methods are implemented at a late stage in the development process, difficulties
with limited design freedom can occur. The cause is that generally, at this stage,
component development has arrived at a point where detailed models are tailored
to meet each discipline’s respective set of requirements.

If the organizational structure allows for it, one strategy for MDO implementa-
tion could be to allow each discipline to create and control its own metamodel [6].
The collection of metamodels could then be accessed across disciplinary CAE teams
to share knowledge and gain insight into how modification suggestions from one dis-

61

6. Discussion

cipline will affect the other ones. Furthermore, this would allow for geographically
disbursed groups to utilize MDO while remaining in control of their domain in which
they have expertise. However, as previously argued, this method would assume that
the domain involved are able to agree upon unanimous design variables to use for
the optimization problem.

A large-scale organizational MDO approach can be hard to implement since it can
be too complex to effectively handle or too simplified to give useful results. If a lo-
cal approach, i.e., implementing MDO for single components of the car, is adopted
instead, knowledge can still be gained while optimization implementation is not as
comprehensive since the scope is smaller. This can also be a strategy for large cor-
porations to gradually introduce MDO, testing it at a small scale and scaling up if
it proves successful. Although results from local MDO methods can sometimes be
misguiding since optimization on a local system might not yield the same desired
outcome for the global system.

6.2 Sustainability Considerations

While the thesis work and its area of focus are unlikely to have any major sustainability-
related impacts, i.e., societal, ethical, or ecological outcomes, it is worth considering
any such possible effects in outline.

MDO is fundamentally aimed at improving the efficiency of development efforts
by formalizing coordination between different engineering disciplines. If successful,
better products and faster development cycles are possible, arguably giving the com-
pany that employs such methods a competitive advantage, ceteris paribus. In the
transport sector, a common objective in optimization is to minimize mass (subject
to various constraints), and MDO has been shown to be effective towards this end
[75], [76], [77]. Light-weighting of car components can improve fuel efficiency by
approximately 0.4 L./100 km for every 100 kg reduction in cars [78]. Translating to
CO4 and other emissions, it is easy to see the savings in environmental and health
impacts in ecological and societal areas, respectively.

Even disregarding weight savings in the automotive sector and adopting a wider
frame of reference, it is clear that if MDO can deliver better-optimized products,
then this impacts other sectors like life science and energy positively. Improvements
in efficiency in the aforementioned areas can yield substantial societal and ecological
benefits. It is furthermore unlikely that the introduction of MDO would displace
R&D engineers due to more effective ways of coordinating multidisciplinary devel-
opment since the engineering expertise is required to both set up models, execute
the optimization and interpret the results. However, according to Agte et al. [§]
acceptance of adopting MDO methods may be relatively low since employees typi-
cally are comfortable working in their environment and somewhat fearsome to lose
control if their domain boundaries open up.

No direct ethical implications or potential consequences that need to be taken due

62

6. Discussion

consideration can be ascertained at the outset of the thesis work. The work does not
contain any ethically salient aspects; however, the outcome may have ethical impli-
cations. Indirect ethical consequences may result if safety in the studied component
can be improved (for it to be made worse is unlikely due to verification via simulation
and otherwise). Although commonly accepted, it can be added that avoidance of
harm is an ethical imperative in both deontological and consequentialist approaches
to moral philosophy [79].

6.3 Method Limitations

In addition to the limitations and delimitations listed at the outset in Section 1.3,
further limitations of the work and the proposed MDO process, respectively, are
discussed here. The limitations of the work are listed below:

e Due to the complex nature of MDO and its associated fields of study, e.g.,
optimization algorithms, metamodeling, DoE, not all aspects of its theory
could be included in Chapter 2. Prioritization due to time limitations may
have caused useful information from the literature not to have been included
in the work.

o The sample of the needs assessment cannot be assured to be representative.
However, it can indicate preferences and serves to provide insight into the
optimization experience of a subset of engineers at VCC.

e The novelty of the proposed MDO process, as shown conceptually in Figure
4.5, should not be overstated as it builds on previous work. All contributions
are too numerous to list but especially noteworthy in their influence on this
work are Duddeck [52], Ryberg, Béckryd, and Nilsson [9], [61], and Agte et
al. [8]. Novelty rather lies in the application, see Chapter 5, the practical
implementation that is flexible for other optimization problems, the discussion
in Chapter 6 and the literature review, see Chapter 2.

« Parameterization, as used in Chapter 5, is dependent on previous studies and
engineering judgment and is therefore subject to a degree of uncertainty. Alter-
natively, iterative sensitivity analyses can be performed as discussed in Section
4.4.2.

o In the verification, see Chapter 5, an assumption of symmetry is used for some
parts of the CSDB geometry. This is done to increase resolution and since no
impact points on the right side are used in the optimization. However, it may
limit the optimization since the design is slightly asymmetrical.

The functionality of the process (Figure 4.5) and modeFRONTIER implementation
(Section 4.2) have been verified for one automotive component. However, the fol-
lowing MDO process limitations should be considered before proceeding with other
design optimization problems:

e The MDO process as described in Chapter 4 need not necessarily be imple-
mented in modeFRONTIER as has been the case in this work. However, if

63

6. Discussion

this modeFRONTIER implementation is considered, there are a number of
limitations specific to it:

— The availability of optimization and metamodeling algorithms is limited
to what modeFRONTIER offers.

— Choice of error measure used to evaluate the metamodel is limited. Squared
error measures such as the RMSE could be preferred to MRE since it is
more useful when large errors are undesirable [80].

e The proposed MDO process is likely most appropriate for design variables
fewer than ten. Direct optimization is recommended for greater design variable
counts [37] but this nullifies the benefits of metamodels as discussed in Section
4.4.3.

— When the number of design variables is >102, only gradient-based opti-
mization (for direct optimization) is practical [81] and OpenMDAO may
be considered due to its efficiency in handling coupled analytic derivatives
as opposed to the less efficient finite-difference approximations used by
commercial software according to [20].

e When the number of load cases increases, it is likely that screening becomes
more difficult since some aspects of the geometry may only be significant for
a particular load case. To screen out the same number of design variables,
the threshold value for variance contribution needs to be heightened, which
in turn captures less contribution to responses, lowering accuracy. This is a
fundamental consideration in variable screening with multiple load cases and
not specific to the proposed approach.

6.4 Future Work

The thesis outcome is an MDO process, verified by a practical implementation.
However, as the recommended approach utilizes parameter thicknesses as design
variables, the design space is somewhat limited. If the software implementation
and scripts provided were further developed to allow for more geometrical features
to be modified, such as angles and curves (e.g., Beizer splines), larger portions of
the design space could be explored. This could be made possible by integrating
ANSA’s morphing tools, which allows for re-shaping of either FE models into the
modeFRONTIER loop depicted in Figure 4.2.

The current approach requires the same design table to be used in all disciplines.
As variable screening results generally differ between the aspects, a more efficient
approach could be used if the modeFRONTIER implementation was further devel-
oped to allow for a nested approach, or a more advanced MDO architecture, as
discussed in Section 2.6.2. This would allow for a unique subset of design variables
to be selected for each respective discipline, giving the option to either reduce the
computational expense required to create the space-filling DoE or to opt for a higher
resolution setup.

64

6. Discussion

The current process and modeFRONTIER implementation focus on performing pa-
rameter thicknesses study using a constant material parameter. Investigations could
be made to modify or further expand the already existing process to evaluate as-
pects such as e.g., material selection and cost model performance when optimizing
the design.

With regards to the implementation as outlined in Chapter 5, other components
may need to undergo modification to reach performance targets. Further inves-
tigations could also be conducted to verify the usability of the process for other
disciplinary functions than crash and NVH, e.g., durability, and also to evaluate the
combination of these.

Concerning the statistical DoE for variable screening, see Section 4.4.2, a Plackett-

Burman design with foldover can be used to get a resolution I'V instead of resolution
IIT experimental design. This has been demonstrated by Tang and Lindqvist [68].

65

6. Discussion

66

I

Conclusion

This work has investigated the needs and views of a sample of engineers at VCC
with regards to MDO and its implementation. It was found that perceived desirable
features of MDO are its utility as a learning tool and that its complexity in com-
bination with fundamental challenges related to both organizational and technical
aspects are perceived hindrances. Furthermore, it was confirmed that ease-of-use is
a highly valued feature in an MDO workflow.

Based on the needs assessment and a review of the literature on MDO and related
fields, a process was proposed and implemented in MDO platform modeFRONTIER.
The process involves variable selection by parameterization and statistical screening,
metamodel-based optimization, and result interpretation steps. Implementation in
modeFRONTIER features parallel analysis of multiple disciplines and load cases,
dynamic waiting, and response extraction through a set of scripts. The develop-
ment of the MDO process was illustrated using a simplified geometry and load
case and subsequently verified with a sizing optimization of a Center Stack Display
bracket. While the verification showed that the process could be used to enhance
knowledge about the system under optimization and that performance can be in-
creased, it also indicates important limitations: (1) interactions outside the system
boundaries of the optimization can limit system performance, emphasizing the im-
portance of global information, (2) the starting geometry limits design freedom and
thus the optimization result, this is especially true for sizing optimization and less so
for optimization where the FE mesh is morphed, and (3) parameterization needs to
be carefully considered because results are evaluated in the framework imposed by it.

Concerning organizational and sustainability aspects, there is reason to believe that
MDO implementation in the automotive industry faces challenges related to the lack
of both appropriate models and shared parameters between disciplines. Strategies
for large-scale metamodel-based MDO in the automotive sector have been proposed
but remain to be implemented at scale. Furthermore, since mass reduction is a
common goal in automotive development and MDO has been shown to be effective
towards this goal, its use can have a positive environmental and health impact in
the areas of ecological and societal sustainability. MDO is deemed unlikely to dis-
place R&D engineers in any significant capacity due to it acting as a tool rather
than a replacement for competent engineers. MDO as a technology is arguably eth-
ically neutral, but if it is used to avoid or reduce harm, e.g., improving the safety
of automotive vehicles, it can be argued to have a positive ethical impact in many
philosophical traditions.

67

7. Conclusion

Finally, future work has been recommended. Additional geometrical features, e.g.,
through mesh morphing, can be used as design variables in the optimization to
offer more considerable design freedom. Alternative or additional objectives and
constraints can be included in the MDO to make its results more valuable and
representative of real trade-offs, e.g., by implementing cost models. Theoretical im-
provements to the statistical Design of Experiments for variable screening are also
suggested.

68

[1]

2]

[10]

[11]

References

Volvo Car Corporation, “This is Volvo,” https://www.media.volvocars.com/
global/en-gb /corporate/this-is-volvo, accessed May 10, 2021.

Volvo Car Group, “Annual report 2020,” https://investors.volvocars.com/
annualreport2020/assets/pdf/VCG_ENG_ 2020__web_ 20210317.pdf, accessed
May 11, 2021.

S. Eppinger and K. Ulrich, Product Design and Development, 6th ed. New
York, NY, USA: McGraw-Hill Higher Education, 2015.

J. Giesing and J.-F. Barthelemy, “A summary of industry MDO applications
and needs,” in 7th AIAA/USAF/NASA/ISSMO Symp. Multidiscip. Anal. Op-
tim., St. Louis, MO, USA, 1998, p. 4737.

N. M. Alexandrov, “Multidisciplinary design optimization,” Optim. Eng., vol. 6,
no. 1, pp. 5-7, 2005.

A.-B. Ryberg, R. Domeij Backryd, and L. Nilsson, “Metamodel-based multi-
disciplinary design optimization for automotive applications,” Linképing Uni-
versity, Div. of Solid Mech., Tech. Rep. LIU-IEI-R-12/003, 2012.

L. A. Schmit Jr, “Structural synthesis 1959-1969 - a decade of progress,” Recent
Adv. in Matriz Methods of Struct. Anal. and Des., pp. 565-634, 1971.

J. Agte, O. De Weck, J. Sobieszczanski-Sobieski, P. Arendsen, A. Morris, and
M. Spieck, “MDO: assessment and direction for advancement - an opinion of one
international group,” Struct. Multidiscip. Optim., vol. 40, no. 1-6, pp. 17-33,
2010.

R. Domeij Béckryd, A.-B. Ryberg, and L. Nilsson, “Multidisciplinary design
optimisation methods for automotive structures,” Int. J. Automot. Mech. Eng.,
vol. 14, no. 1, pp. 4050-4067, 2017.

Z.-F. Fu and J. He, Modal Analysis. Oxford, U.K.: Elsevier, 2001.

M. F. M. Alkbir, S. M. Sapuan, A. A. Nuraini, and M. R. Ishak, “Fibre proper-
ties and crashworthiness parameters of natural fibre-reinforced composite struc-
ture: A literature review,” Compos. Struct., vol. 148, pp. 59-73, 2016.

69

https://www.media.volvocars.com/global/en-gb/corporate/this-is-volvo
https://www.media.volvocars.com/global/en-gb/corporate/this-is-volvo
https://investors.volvocars.com/annualreport2020/assets/pdf/VCG_ENG_2020_web_20210317.pdf
https://investors.volvocars.com/annualreport2020/assets/pdf/VCG_ENG_2020_web_20210317.pdf

References

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[22]

23]

[24]

[25]

70

J. Fang, G. Sun, N. Qiu, N. H. Kim, and Q. Li, “On design optimization for
structural crashworthiness and its state of the art,” Struct. Multidiscip. Optim.,
vol. 55, no. 3, pp. 1091-1119, 2017.

M. Kiani, I. Gandikota, A. Parrish, K. Motoyama, and M. Rais-Rohani,
“Surrogate-based optimisation of automotive structures under multiple crash

and vibration design criteria,” Int. J. Crashworthiness, vol. 18, no. 5, pp. 473~
482, 2013.

C. H. Liu, Y. C. Lai, C. H. Chiu, and M. H. Lin, “Interior head impact analysis
of automotive instrument panel for unrestrained front seat passengers,” Key
Eng. Mater., vol. 715, pp. 174-179, 2016.

P. Y. Papalambros and D. J. Wilde, Principles of Optimal Design: Modeling
and Computation, 3rd ed. Cambridge University Press, 2017.

P. W. Christensen and A. Klarbring, An Introduction to Structural Optimiza-
tion. Springer, 2008.

D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, 2nd ed.
Reading, MA, USA: Addison-Wesley, 1984.

P. Pedregal, Introduction to Optimization. New York, NY, USA: Springer,
2004.

J. R. R. A. Martins and A. Ning, “Engineering design optimization,” 2021,
advance book copy. [Online]. Available: https://Inkd.in/e5tn3Xm

J. S. Gray, J. T. Hwang, J. R. R. A. Martins, K. T. Moore, and B. A. Naylor,
“OpenMDAO: An open-source framework for multidisciplinary design, analysis,
and optimization,” Struct. Multidiscip. Optim., vol. 59, no. 4, pp. 1075-1104,
2019.

A. Younis and Z. Dong, “Trends, features, and tests of common and recently
introduced global optimization methods,” Eng. Optim., vol. 42, no. 8, pp. 691—
718, 2010.

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-free
Optimization. SIAM Publications, 2009.

L. M. Rios and N. V. Sahinidis, “Derivative-free optimization: a review of
algorithms and comparison of software implementations,” J. Global Optim.,
vol. 56, no. 3, pp. 1247-1293, 2013.

R. T. Marler and J. S. Arora, “The weighted sum method for multi-objective
optimization: new insights,” Struct. Multidiscip. Optim., vol. 41, no. 6, pp.
853-862, 2010.

S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms. Berlin,
Germany: Springer, 2008.

https://lnkd.in/e5tn3Xm

References

[26]

S. Shetty, “Optimization of vechicle structures under uncertainties,” Ph.D. dis-
sertation, Dept. of Manage. and Eng., Link6ping University, Linkoping, Sweden,
2017.

E. Rigoni and S. Poles, “NBI and MOGA-II, two complementary algorithms for
multi-objective optimizations,” in Dagstuhl Semi. Proc. Dagstuhl, Germany:
Schloss Dagstuhl — Leibniz Center for Informatics, 2005, pp. 1-22.

C. Poloni and V. Pediroda, “GA coupled with computationally expensive sim-
ulations: tools to improve efficiency,” Genet. Algorithms and Fvol. Strategies
Eng. and Comput. Sci.: Recent Adv. and Ind. Appl., pp. 267-288, 1997.

S. Poles, “Bench-marking MOGA-II,” Esteco, Tech. Rep. 2004-001, 2003.

S. Poles, E. Rigoni, and T. Robic, “MOGA-II performance on noisy optimiza-
tion problems,” in Int. Conf. Bioinspired Optim. Methods and Appl., Ljubljana,
Slovenia, 2004, p. 51-62.

H.-Y. Kim, “Analysis of variance (ANOVA) comparing means of more than two
groups,” Restor. Dent. Endod., vol. 39, no. 1, p. 74, 2014.

C. Gu, Smoothing spline ANOVA models, 2nd ed. ~New York, NY, USA:
Springer, 2013, vol. 297.

J. Antony, Design of Exzperiments for Engineers and Scientists, 2nd ed. Else-
vier, 2014.

K. Vanaja and R. H. Shobha Rani, “Design of experiments: concept and appli-
cations of Plackett Burman design,” Clin. Res. Regul. Aff., vol. 24, no. 1, pp.
1-23, 2007.

R. L. Plackett and J. P. Burman, “The design of optimum multifactorial ex-
periments,” Biometrika, vol. 33, no. 4, pp. 305-325, 1946.

M. D. McKay, R. J. Beckman, and W. J. Conover, “Comparison the three
methods for selecting values of input variable in the analysis of output from a
computer code,” Technometrics, vol. 21, no. 2, 1979.

Esteco SpA, mode FRONTIER User Guide, 2020, 2020R2 edition.

A. 1. J. Forrester and A. J. Keane, “Recent advances in surrogate-based opti-
mization,” Prog. Aerosp. Sci., vol. 45, no. 1-3, pp. 50-79, 2009.

M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three
methods for selecting values of input variables in the analysis of output from a
computer code,” Technometrics, vol. 42, no. 1, pp. 55-61, 2000.

E. L. Loweth, G. N. De Boer, and V. V. Toropov, “Practical recommendations
on the use of moving least squares metamodel building,” in Proc. 15th Int.
Conf. Civil, Struct. and Environ. Eng., Chania, Crete, Greece, 2011.

71

References

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[55]

72

G. G. Wang and S. Shan, “Review of metamodeling techniques in support of
engineering design optimization,” J. Mech. Eng., vol. 129, no. 4, pp. 370-380,
2007.

N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and
P. K. Tucker, “Surrogate-based analysis and optimization,” Prog. Aerosp. Sci.,
vol. 41, no. 1, pp. 1-28, 2005.

G. E. P. Box and K. B. Wilson, “On the experimental attainment of optimum
conditions,” J. R. Stat. Soc. Series B Methodol., vol. 13, no. 1, pp. 1-38, 1951.

A. A. Mullur and A. Messac, “Extended radial basis functions: more flexible
and effective metamodeling,” ATAA J., vol. 43, no. 6, pp. 1306-1315, 2005.

M. Buhmann and J. Jéger, “On radial basis functions,” Snapshots of Modern
Mathematics from Oberwolfach, 2019, SNAP-2019-002-EN.

R. L. Hardy, “Multiquadric equations of topography and other irregular sur-
faces,” J. Geophys. Res., vol. 76, no. 8, pp. 1905-1915, 1971.

H. Fang and M. F. Horstemeyer, “Global response approximation with radial
basis functions,” Eng. Optim., vol. 38, no. 04, pp. 407-424, 2006.

D. G. Krige, “A statistical approach to some basic mine valuation problems
on the Witwatersrand,” J. South Afr. Inst. Min. Metall., vol. 52, no. 6, pp.
119-139, 1951.

J.-P. Chiles and N. Desassis, “Fifty years of kriging,” in Handbook of Mathe-
matical Geosciences. Springer, 2018, pp. 589-612.

J. P. C. Kleijnen, “Kriging metamodeling in simulation: A review,” Fur. J.
Oper. Res., vol. 192, no. 3, pp. 707-716, 2009.

R. M. Mendes and R. Lorandi, “Indicator kriging geostatistical methodology
applied to geotechnics project planning,” in 10th Congr. Int. Assoc. for Eng.
Geol. and Environ. (IAEG), London, U.K., 2006, pp. 1-12.

F. Duddeck, “Multidisciplinary optimization of car bodies,” Struct. Multidiscip.
Optim., vol. 35, no. 4, pp. 375-389, 2008.

J. R. R. A. Martins and A. B. Lambe, “Multidisciplinary design optimization:
a survey of architectures,” AIAA J., vol. 51, no. 9, pp. 2049-2075, 2013.

E. J. Cramer, J. E. Dennis, Jr, P. D. Frank, R. M. Lewis, and G. R. Shubin,
“Problem formulation for multidisciplinary optimization,” SIAM J. Optim.,
vol. 4, no. 4, pp. 754776, 1994.

N. P. Tedford and J. R. R. A. Martins, “Benchmarking multidisciplinary design
optimization algorithms,” Optim. Eng., vol. 11, no. 1, pp. 159-183, 2010.

References

[56]

[57]

[59]

[60]

[61]

[62]

[63]

J. T. Hwang, “A modular approach to large-scale design optimization of
aerospace systems,” Ph.D. dissertation, Dept. of Aerosp. Eng., University of
Michigan, Ann Arbor, MI, USA, 2015.

T. C. Wagner, “A general decomposition methodology for optimal system de-
sign,” Ph.D. dissertation, Dept. of Mech. Eng. and Appl. Mech., University of
Michigan, Ann Arbor, MI, USA, 1993.

H. M. Kim, D. G. Rideout, P. Y. Papalambros, and J. L. Stein, “Analytical
target cascading in automotive vehicle design,” J. Mech. Des., vol. 125, no. 3,
pp- 481-489, 2003.

A. B. Lambe and J. R. R. A. Martins, “Extensions to the design structure ma-
trix for the description of multidisciplinary design, analysis, and optimization
processes,” Struct. Multidiscip. Optim., vol. 46, no. 2, pp. 273-284, 2012.

J. T. Allison, M. Kokkolaras, and P. Y. Papalambros, “On selecting single-level
formulations for complex system design optimization,” J. Mech. Des., vol. 129,
no. 9, pp. 898-906, 2007.

R. Domeij Béckryd, “Multidisciplinary design optimization of automotive struc-
tures,” Ph.D. dissertation, Dept. of Manage. and Eng., Linkdping University,
Linképing, Sweden, 2013.

R. Pandi Perumal, H. Voos, F. Dalla Vedova, and H. Moser, “Comparison of
multidisciplinary design optimization architectures for the design of distributed
space systems,” in Proc. 71st Int. Astronautical Congr. 2020, Online, 2020.

R. Patel and B. Davidson, Forskningsmetodikens Grunder: Att Planera,
Genomfira och Rapportera en Undersokning, 3rd ed. Lund, Sweden: Stu-
dentlitteratur, 2003, in Swedish.

K. F. Punch, Introduction to Social Research: Quantitative and Qualitative
Approaches, 3rd ed. SAGE Publications, 2014.

V. Braun and V. Clarke, Thematic Analysis. American Psychological Associ-
ation, 2012, pp. 57-71.

J. T. Hwang, D. Y. Lee, J. W. Cutler, and J. R. R. A. Martins, “Large-scale
multidisciplinary optimization of a small satellite’s design and operation,” J.
Spacecr. Rockets, vol. 51, no. 5, pp. 1648-1663, 2014.

C.-A. Thole and L. Mei, “Reasons for scatter in crash simulation results,” in
4th Eur. LS-DYNA Users’ Conf., Ulm, Germany, 2003.

M. Tang and K. Lindkvist, “Reducing the squeak and rattle risk by improving
the dynamic response and geometric variation in an assembly using topome-
try optimisation,” Master’s Thesis, Dept. of Des. Sci., Lund University, Lund,
Sweden, 2021.

73

References

[69]

[70]

[71]

[77]

[78]

[79]

[30]

[81]

74

H. Cho, S. Bae, K. K. Choi, D. Lamb, and R.-J. Yang, “An efficient variable
screening method for effective surrogate models for reliability-based design op-
timization,” Struct. Multidiscip. Optim., vol. 50, no. 5, pp. 717-738, 2014.

L. Ricco, E. Rigoni, and A. Turco, “Smoothing spline ANOVA for variable
screening,” Dolomites Res. Notes Approz., vol. 6, 2013.

R. J. Yang, N. Wang, C. H. Tho, J. P. Bobineau, and B. P. Wang, “Metamod-
eling development for vehicle frontal impact simulation,” J. Mech. Des., vol.
127, no. 5, pp. 1014-1020, 2005.

L. Shi, R. J. Yang, and P. Zhu, “A method for selecting surrogate models in
crashworthiness optimization,” Struct. Multidiscip. Optim., vol. 46, no. 2, pp.
159-170, 2012.

A. Miller, Subset Selection in Regression, 2nd ed. New York, NY, USA: CRC
Press, 2002.

C. Stephens and W. Baritompa, “Global optimization requires global informa-
tion,” J. Optim. Theory Appl., vol. 96, no. 3, pp. 575588, 1998.

J. Rakowska, A. Chator, B. Barthelemy, M. Lee, S. Morgans, J. Laya, G. Zinn,
C.-H. Chuang, and S. R. Gondipalle, “An iterative application of multi-
disciplinary optimization for vehicle body weight reduction based on 2015 Mus-
tang product development,” SAE Int. J. Mater. Manuf., vol. 8, no. 3, pp. 685—
692, 2015.

K. Craig, N. Stander, D. Dooge, and S. Varadappa, “MDO of automotive ve-
hicle for crashworthiness and NVH using response surface methods,” in 9th
AIAA/ISSMO Symp. Multidiscip. Anal. and Optim., Atlanta, GA, USA, 2002,
paper 2002-5607.

S. Blum and J. Will, “Combining robustness evaluation with current automotive
MDO application,” in Weimar Optimization and Stochastic Days 2006, vol. 3,
Weimar, Germany, 2006.

A. Bandivadekar, K. Bodek, L. Cheah, C. Evans, T. Groode, J. Heywood,
E. Kasseris, M. Kromer, and M. Weiss, “On the road in 2035: reducing trans-

portation’s petroleum consumption and GHG emissions,” Massachusetts Insti-
tute of Technology, Tech. Rep., 2008.

L. Alexander and M. Moore, “Deontological Ethics,” in The Stanford Encyclo-
pedia of Philosophy, E. N. Zalta, Ed. Metaphysics Research Lab, Stanford
University, 2020.

J. Wesner, “MAE and RMSE - which metric is better?” https://medium.com/
@human-in-a-machine-world /e60ac3bdel3d, accessed May 4, 2021.

J. T. Hwang and J. R. R. A. Martins, “A computational architecture for
coupling heterogeneous numerical models and computing coupled derivatives,”
ACM Trans. Math. Softw., vol. 44, no. 4, pp. 1-39, 2018.

https://medium.com/@human-in-a-machine-world/e60ac3bde13d
https://medium.com/@human-in-a-machine-world/e60ac3bde13d

A

Appendix - Software
Implementation

&
| —valio - - -
| |
—r'tl—:— 50—
T) g
= Li‘ . .=
@& o0
i
Mo— e
E ”
-
= ‘ e L] Y
| i
—r"llg:—é —— o
e— 2 T &
- L Y
Mo ‘W Fe
o— i
—
: M ‘W Y
5
B +
-
K ”

Figure A.1: Optimization loop implementation in modeFRONTIER

A. Appendix - Software Implementation

IT

B

Appendix - Script Code

Listing B.1: Bash shell script example from LS-DYNA used in the modeFRON-
TIER implementation. Sensitive information has been removed.

#!/bin/bash

HAHAHHAHHAHH AR HARHEAS Settings H#H#AH#H#HAHHAHHAHHAHHAHHHH

#User
user=write_name_of _user_here

#Define load case
LC=1

#Job name
file=job_name_$LC

#Metascript name
metascript_name=name_of_script_$LC.py

#Sleep intervals
setSleep=50

sleepFactor=5

#Define modeFrontier project directory
main_path=/write/your/project/path/here

#Result path for job
res_path=/write/your/result/path/here

#Mass to be subtracted:
#Adjust manually at bottom of the script (mass_number)

HHBAHBAHAAHAHHARHARBR B A A B AARAH B R BB A B AA R AR B R RAHHH

ITT

B. Appendix - Script Code

HAH#HHAHHHAHHA##E Script starting ###HH##HHRHHAHHAHHAH

echo Script Started!
date +"UT.%2N" #time stamp

sleep $setSleep #50s

lsdyna.run ... $file.key
echo n n

echo Job queued!

date +"YT.%2N" #time stamp
echo n n

sleep $setSleep #50s

#Waiting until file modifications happens in res_path

watch -d -n 0.5 -t -g 1ls -1R $res_path | shalsum > /dev/
null && echo "Watch triggered!."

date +"JT.%2N" #time stamp

echo " "

cd $res_path
echo Sleeping $((setSleep * sleepFactor)) sec to ensure

old log file is removed...
sleep $((setSleep * sleepFactor)) #250s

echo Continuing... Looking for new log file...
date +"JT.%2N" #time stamp
echo " "
while [! -f $file.log];
do
echo Waiting for log file to be created... date +"%T

.%2N" #time stamp
sleep $((setSleep / sleepFactor))
done

echo Log file detected!
date +"JT.%2N" #time stamp
echo " "
while true
do
echo Grep: $(grep -c ’LS-Dyna done at:’ $file.log)

if [$(grep -c ’LS-Dyna done at:’ $file.log) == 1];

IV

B. Appendix - Script Code

then
echo Simulation Finished!
break;
fi;
echo Waiting for simulation to finish... date +"%T.%2N
" #time stamp
sleep $((setSleep / sleepFactor)) #10s
done

echo " n

echo Simulation done, running metascript...
date +"JT.%2N" #time stamp

echo n n

cd -

cd $main_path
echo Path for script and metascript
pwd

#Runs MetaPost with scripts that outputs clip3ms and
maxacc G.
meta -nogui -s $metascript_name $res_path

echo MetaPost script started.
date +"YT.%2N" #time stamp
echo n n

echo Waiting for metascript to finish...
echo " n

sleep $setSleep #50s
echo Result files are put in directory:
pwd

echo " n

source clip3ms_$LC.txt
echo Clip3ms: $clip3ms [G]

source maxacc_ $LC.txt
echo Maxacc: $maxacc [G]

#Changing directory to mF default directory
cd -

B. Appendix - Script Code

#Extract mass

cat $res_path/d3hsp |grep -A 3 't ot al mas s’ >
mass.txt

echo Mass: $(awk ’BEGIN{test=0}{if (NR==1) test=test+$NF}
END{print test-mass_number}’ mass.txt) [kg]

echo " "

#Write outputs to text document

echo clip3ms_$LC=$clip3ms > output_dyna_$LC.txt

echo maxacc_$LC=%maxacc >> output_dyna_$LC.txt

echo mass=$(awk ’BEGIN{test=0}{if (NR==1) test=test+$NF}
END{print test-mass_number}’ mass.txt) >>
output_dyna_$LC.txt

echo End of script!

echo n n
HHH#HHAHH AR HHAH#AS End of script #HH##H#HH#AHHAHHAHHAHHAH

VI

DEPARTMENT OF INDUSTRIAL AND MATERIAL SCIENCE
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden
www.chalmers.se

CHALMERS

UNIVERSITY OF TECHNOLOGY

www.chalmers.se

	Introduction
	Background
	Volvo Car Corporation
	Optimization in the Product Development Process
	Multidisciplinary Design Optimization
	Center Stack Display Bracket Requirement Conflict

	Purpose and Aim
	Limitations
	Research Questions
	Thesis Outline

	Theory
	Modal and Crash Analysis
	Modal Analysis
	Crash Analysis

	Introduction to Design Optimization
	Optimization Algorithms
	Multi-Objective Optimization

	Statistical Theory
	Design of Experiments
	Experimental Design for Screening
	Experimental Design for Modeling

	Metamodels
	Polynomial Regression
	Radial Basis Functions
	Kriging
	Performance Indices for Metamodels

	Multidisciplinary Design Optimization
	Terminology and General Formulation
	Architectures

	Methodology
	Literature Study
	Needs Assessment
	Software Selection
	Process Development
	Process Implementation on CSDB
	Final Recommendations

	Process Development
	Needs Assessment Findings
	Current Practice
	Software
	Optimization Maturity
	Hindrances of an MDO Process
	Desirable Features of an MDO Process

	Process Implementation in modeFRONTIER
	Development Problem
	Proposed Process
	Problem Formulation
	Variable Selection
	Metamodeling
	Metamodel-Based Optimization
	Validation at Optima
	CAD Interpretation

	Process Verification on an Automotive Component
	Problem Formulation
	Variable Selection
	Metamodeling
	Metamodel-Based Optimization
	Optimization Infeasibility
	Second Multi-Objective Optimization
	CAD Interpretation

	Discussion
	Organizational Considerations
	Sustainability Considerations
	Method Limitations
	Future Work

	Conclusion
	References
	Appendix - Software Implementation
	Appendix - Script Code

