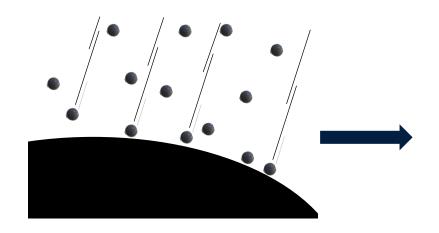
SHOT PEENING PROCESS OPTIMIZATION

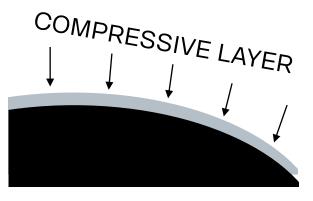
SOPHIA FÁTIMA MONTEIRO

MECHANICAL ENGINEERING - ENGINEERING DESIGN AND PRODUCT DEVELOPMENT

Agenda:

Introduction
Objective
Method
Models
Results
Discussion
Conclusion


- The thesis work is conducted with the department of heat treatment (DXTMH) at Scania
- Optimize the gear shot peening process
- What is shot peening?
- Why it is used in Scania
- Why thesis is conducted thesis purpose



Theoretical Information

- Shot Peening Parameters
 - Peening time (CT)
 - Peening pressure /velocity
 - Shot size
 - Shot material hardness
 - Gear material hardness

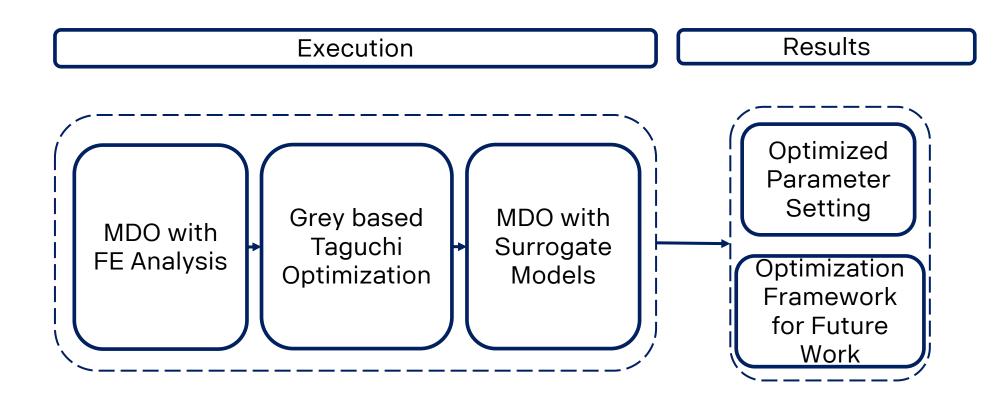
Objectives

Find optimal parameter settings for compressed air type machine to obtain Class 3 specification requirements (double shot peening)

Investigate the influence of parameters on strength of gears.

Validate results by conducting experimental test

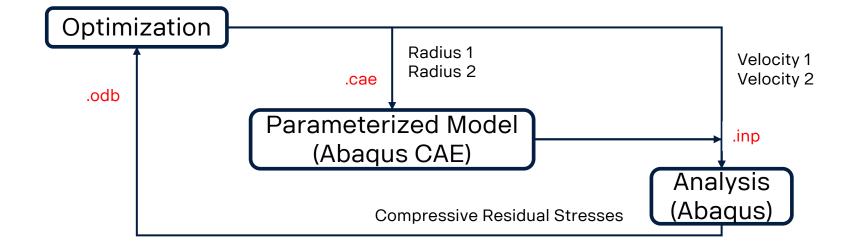
Analyse the results obtained



METHODS

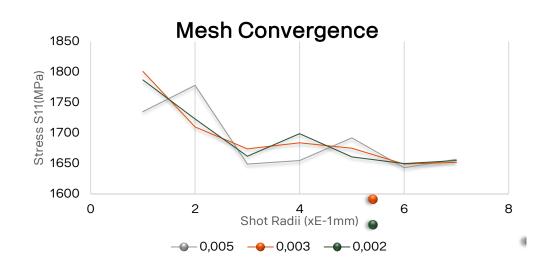
METHODS AND TOOLS USED AND HOW THEY ARE CONNECTED

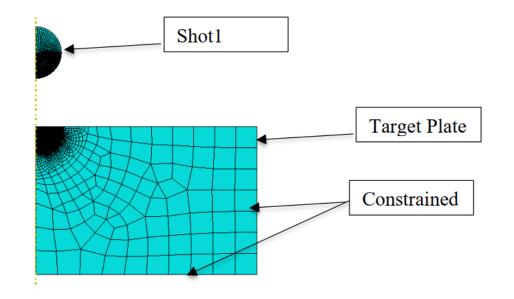
Workflow



MDO USING FE ANALYSIS FIRST OPTIMIZATION

Multidisciplinary Design Optimization using FEA

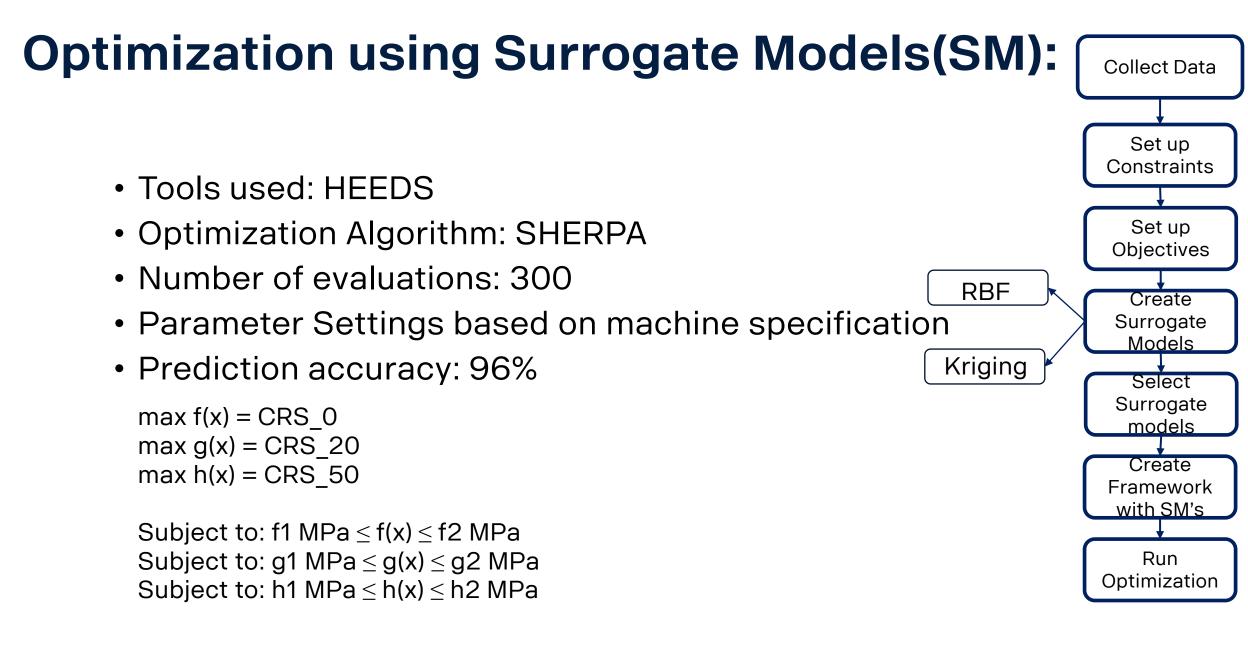

- Tools used: HEEDS
- Optimization Algorithm: SHERPA
- Number of evaluations: 150
- Parameter Settings based on machine specification



min f(x) = StressSubject to: $f(x) \le -1700MPa$

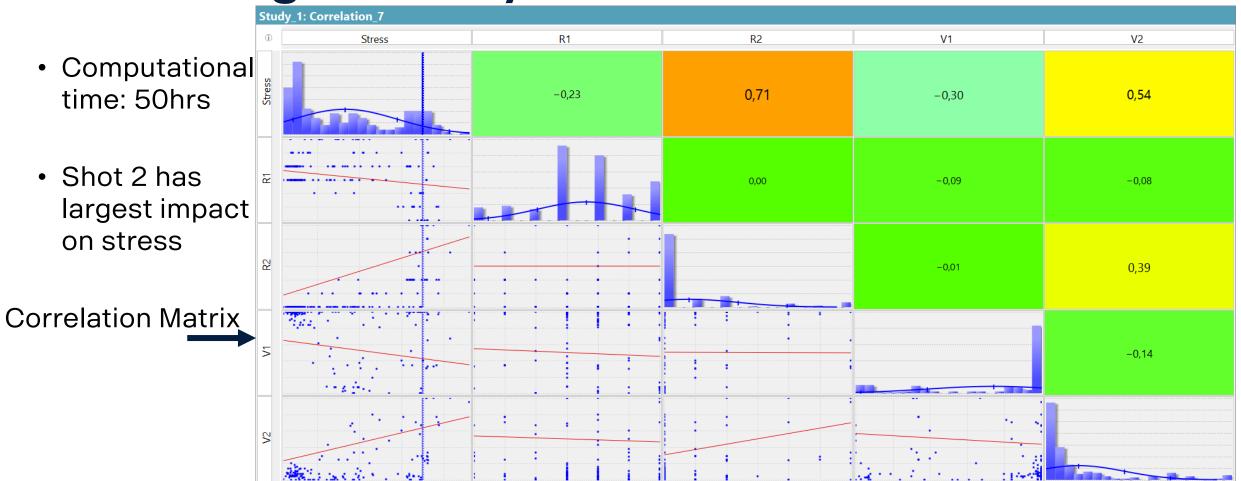
Parameterized Model and Stress Analysis :

- Tools used: Abaqus Explicit
- Modelling: Axisymmetric Model
- Assumption: Rectangular target plate instead of gear profile
- Mesh Study
- Validation



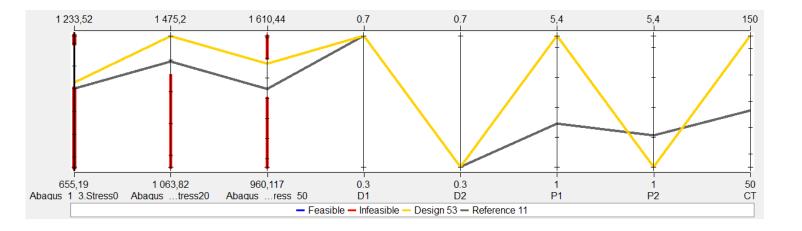
10

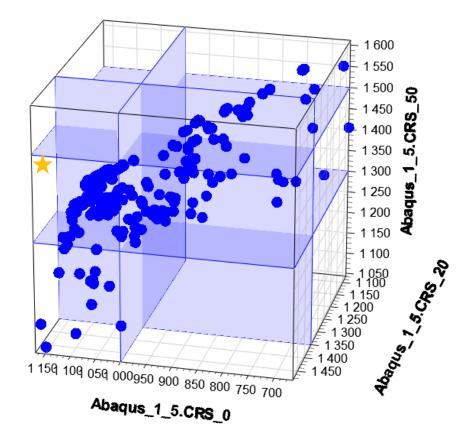
MDO USING SURROGATE MODELS THIRD OPTIMIZATION



RESULTS

MDO using FE Analysis




COMPARISON BETWEEN FEA AND PRACTICAL RESULTS

							Practical max — with pre-stress						
							-1200	SAMPLE_3	SAMPLE_4	SAMPLE_5	SAMPLE_6	SAMPLE_7	SAMPLE_8
	Sample_3	Sample_4	Sample_5	Sample_6	Sample_7	Sample_8							•
	5,2bar	0,7mm 1bar 30m/s. 0,7mm 3,8bar 67,5m/s	0,3mm 1,1bar 31m/s. 0,3mm 5bar 76,5m/s	30m/s. 0,7mm 5.1bar 77,5m/s	0,3mm 3,7bar 63m/s. 0,7mm 3,8bar 67,5m/s	0,3mm 1bar 30m/s. 0,7mm 5,4bar 80m/s	-1400 -1600 (Yd W)-1800 SS B H-2000 S	•					
Experimental	,						-2200						
max (MPa)	-1390	-1394,2	-1434,7	/ -1335,2	-1374,4	-1355,1	-2400						
Analysis (MPa)	-2484	-2053	-2141	-2102	-2081	-2110	-2600						

MDO using Surrogate Models:

- computational time: 1 hr
- CRS_0 : increase by 1.2%
- CRS_20 : increase by 3.7%
- CRS_50 : increase by 4.7%

MDO using Surrogate Models:

Study_5: Correlation_5											
(j)	D1	D2	P1	P2	CT	Abaqus_1_5.CRS_0	Abaqus_1_5.CRS_20	Abaqus_1_5.CRS_50			
5		-0,10	0,05	-0,13	0,13	0,18	0,16	0,39			
<mark>D2</mark>			-0,03	0,25	-0,14	-0,63	-0,86	0,11			
5				-0,26	0,08	-0,03	0,23	0,75			
P2					-0,20	-0,84	-0,67	0,11			
J						0,05	0,38	0,28			
AbaS_0							0,82	-0,34			
Aba20								-0,01			
Aba50			······································								

DISCUSSION

Discusion:

- Difference in the analysis and experimental results can be due to:
 - simplified axi- symmetric model
 - single shot impact
 - reading stress results along symmetric line VS XRD averaging
- Larger shots and pressures cause larger CRS deeper into the peened component
- Smaller shots and pressures cause larger CRS on surface and $20\mu m$ deep
- CRS at 50µm is mainly influenced by shot 1
- CRS at $0\mu m$ and $20\mu m$ is mainly influenced by shot 2

CONCLUSION

Conclusion :

Optimal parameter setting- D1:0.7mm D2:0.3mm P1:5.4bar P2:1bar CT:150%

Shot 2 parameters have maximum influence on CRS_0 and CRS_20

Shot 1 parameters have maximum influence on CRS_50

CT has small influence on CRS

Focus on building a FE model to simulate random shot impacts

Include more parameters in the optimization process

Cost of shot peening should be taken into consideration

THANK YOU!

