

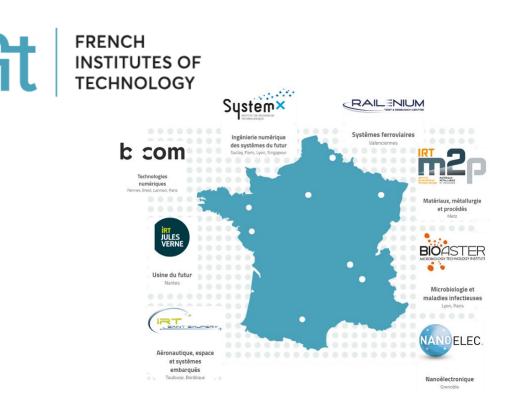
A way to produce lightweight structures: from raw materials to final composite part

Sébastien Guéroult

R&D engineer, Jules Verne Institute

irt Jules Verne

THE FUTURE OF YOUR FACTORIES


The DNA of the Jules Verne Institute

Our Dedication to Manufacturing

OUR VOCATION To reinforce the competitiveness of the French industry

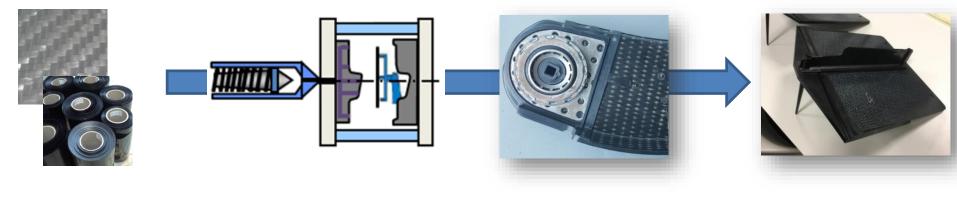
OUR MISSION To accelerate innovation and promote technology transfer to the factories

> **OUR CORE BUSINESS** Collaborative research

115M€ from the Programme of Investments for the Future

Our Market-oriented Roadmap

R&D THEMATICS TECHNOLOGICAL EXPERTISE FORMING AND PREFORMING PROCESSES æ COMPOSITE PROCESSES 53 ASSEMBLY MODELLING AND SIMULATION ADDITIVE METAL ADDITIVE MANUFACTURING MANUFACTURING PROCESSES CHARACTERISATION, CONTROL AND MOBILITY IN MONITORING **INDUSTRIAL ROBOTICS AND ENVIRONMENT** COBOTICS


MANUFACTURING FLEXIBILITY

From raw materials to final composite part

How do we help to bring composite in industries ?

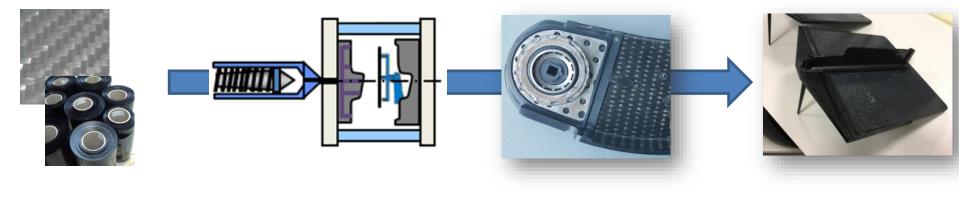
A few things we have to work on :

Raw Materials

- Cost ?
- New Materials ?

Process

- Cost ?
- Production rate?
- Net shape part ?
- New process ?


Assembly

- Assembly Time ?
- Composite/metal ?

Final composite part

How do we help to bring composite in industries ?

Topics of our presentation:

Raw MaterialsProcessAssemblyFinal
composite partFORCE projectCOMPOSTAMPLIMECO projectFor the second second

ÌRT JULES VERNE

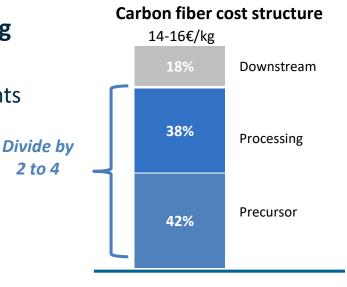
Economical Carbon Fiber : FORCE

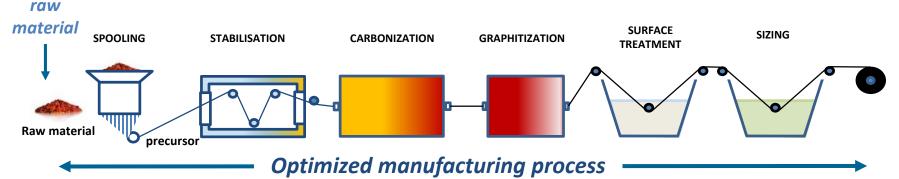
FORCE PROJECT : Economical Carbon Fiber

A consortium regrouping carbon fiber « users » and « producers » Consortium includes players on the entire value chain

- Led by the "Institut Recherche Technologique" Jules Verne
- Benefit from CANOE technical platform expertise
- Audited by an independent Scientific Council (ex carbon manufacturer industrial director, Research director on carbon fiber...)
- With scientific collaboration of French universities, laboratories and CNRS (3 PhD and 4 postdoctoral positions)
- Sponsored by the "Plateforme de la Filière Automobile (PFA)"

Chemicals/ Raw materials	Process	Users	Technical Centers
	Mersen	DECATHLON Faurecia	Cance
	CHOMARAT	PLASTIC OMNUM PLASTIC OMNUM PLASTIC OMNUM PLASTIC OMNUM	INT JULES VERNE


A competitive Carbon Fiber ?


Development of a low cost carbon fiber at 8€/kg

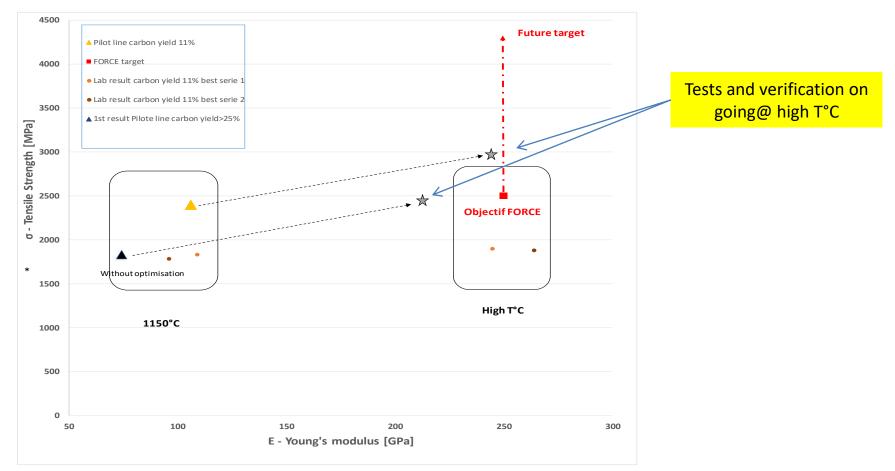
Today price>14€/kg

Low cost

- Target automotive applications for structural elements
 - e.g. 250 GPa, 2500 Mpa
- Improving the raw material chemical structure
- Using alternative precursors (mainly bio based)
- Optimizing the whole manufacturing process

Carbon fibers from cellulose precursor

Polyvalent continuous carbonization pilot line able to :


- Produce enough carbon fibers for realization of composite demonstrators
- Carbonize different kinds of precursors : cellulose, lignin, PE, others...
- Demonstrate the feasibility for further industrialization

10 tows in parallel > 1100°C for now carbonization of fabrics 1 to 4 tons / year

Performance: where we are

Structural composite parts : COMPOSTAMP

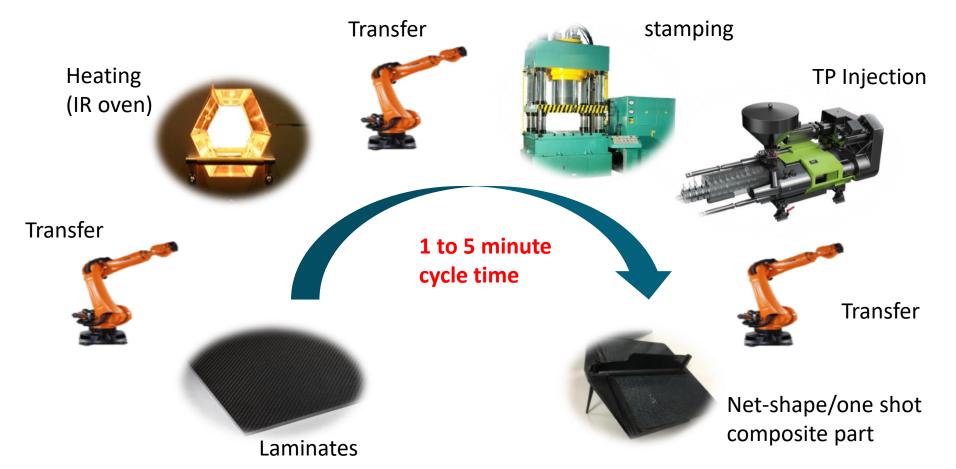
Composite parts by stamping and overmolding Manufacturing net shape/one shot composite part by stamping and overmolding processes for aeronautic and automotive industries.

Targets :

- Economical performance
- Technical Performance
- Production rate
- Repetability process

Patners :

	AERONAUTIC	AUTOMOTIVE
Production rate	1 part/5 minutes cycle time	1 part/minute cycle time
Materials	Carbon fibers with PEKK resin	Glass fibers with PA66 resin
Size part	Small part (0,1m ²)	Medium part (1m²)
Batch production	30 parts	300 parts
TRL level	From 2 to 4	From 4 to 6



COMPOSTAMP composites parts

Automotive technical part	Automotive technical part	Aeronautic simple part	Aeronautic technical part
Dimensions 800x600 mm Thickness 2 mm	Dimensions 500x150 mm Thickness 2 mm	Dimensions 225x200 mm Thickness 4 mm	Dimensions 160x140 mm Thickness 4 mm
Vertical Press	Horizontal Press	Horizontal Press	Horizontal Press
Where : CETIM	Where : IPC	Where : DEDIENNE	Where : DEDIENNE

Stamping and overmolding process

Aeronautic technical analysis

What do we need to develop to make industrial overmolded parts fly?

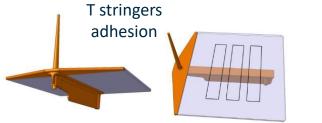
- Design to manufacture with overmolding process
- Design specifics for hybrid parts mixing continuous fibres with short fibres

Stamping and injection of high performance materials

 Injection of PEKK or PAEK resins is not a baseline for manufacturers. Process window has to be determined, tooling has to be adapted

Overmolded products characterization

 Mechanical resistance, physico-chemical characterization, adhesion between injected part on substrate, conductivity


Industrial assessment


- Quality, repeatability, capability, cost assessment

Conception and Design of characterization samples

Design of characterization samples: result of a concession between characterization needs and process limitations

Objective = Adhesion between
injected part and composite part
→ Sizing approach = Break has to
be in the injected part and not at
the interface

Objective = characterize the edge sealing and evaluate the knock down factor

→ Sizing approach = Edge sealing has a mechanical contribution to the part sizing **Objective** = Adhesion between injected part and composite laminate (peeling & shear strain)

→ Sizing approach = Break takes part in the injected area and shear strain above 30 MPa

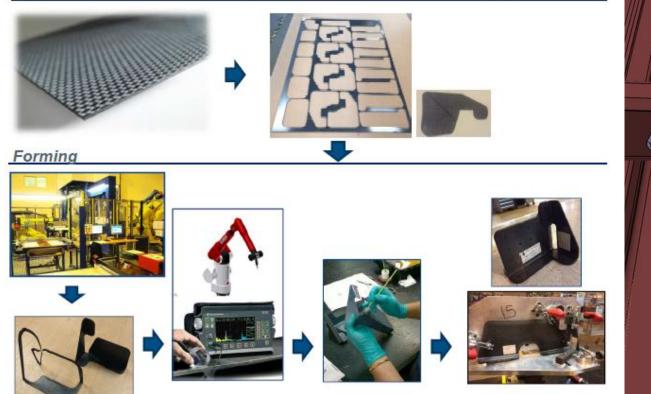
Mechanical test objectives: understanding of the impact of overmolding on composite parts made of continuous fibers

Aeronautic example : from metal to composite

Develop and evaluate the stamping overmoulding industrial performances, with an application to fuselage clips

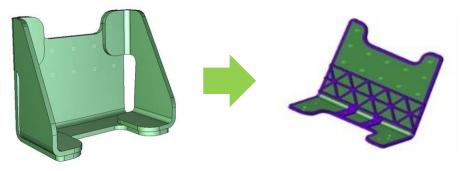
TO BE One shot overmoulded part

- Develop stamping over moulding process full automated line
- Clip/cleat redesign with "One Shot" + "Net shape" functions integration
- Carbon/PEKK UD & Fabrics substrates / PEKK resin over moulded

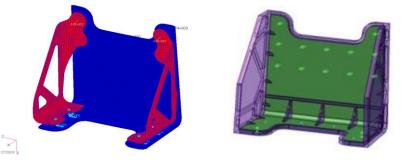

Industrial objectives :

- Reduce lead time
- Reduce recurrent costs
- Increase rate

Fuselage clips manufacturing (AS IS)


Blank preparation

→7 production steps


Clip evolution and design

Base line: A350 fuselage clip

- First evolution: injection design to reach the same stress requirements
 - Injection cross junctions (mechanical properties)
 - Edge sealing with TP injection
 - Cross junction not possible due to technologies and mold limitation.
 - -> Partial injection

New design adapted to stamp forming and overmolding

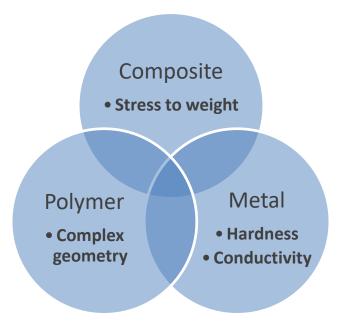
- Second evolution: Study of injection design reaching the same stress requirements.
 - Hollow cleat injection
 - Cleats injection not possible due to technologies and mold limitation.
 - -> Weld line

Clip final evolution and design

Base line: A350 fuselage clip

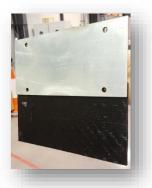
New design adapted to stamp forming and overmolding

Third evolution: taking into account mold and technologies limitations


- Composites area simplification + drilling zone taken into account
- Cleats injectable
- Injection modelling improvement
- Tooling injection optimization

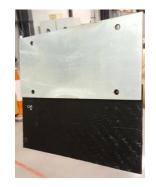
Metal/composite assembly : LIMECO

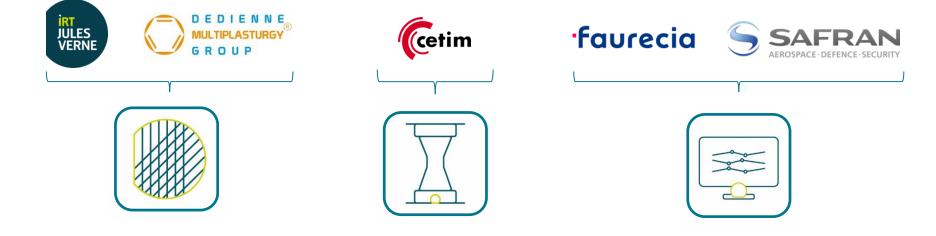
Why hybriding Composite, Polymer and Metal


Using the best of each « world »

How to assemble metals with composites

- Fastening
- Bonding
- Overmolding
- Direct adhesion




Designing Polymer/Metal assemblies

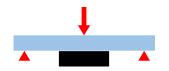
Assembly method: Direct adhesion

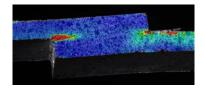
Mechanical strength of the assembly

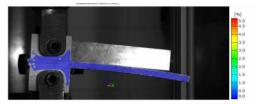
- Properties of the bond line
- Stress calculation methodology

Properties of the bond line **Objective: Achieve equivalent properties to adhesive bonding** <u>SLS</u> Process optimisation 10MPa Surface preparation selection 20MPa **30MPa**

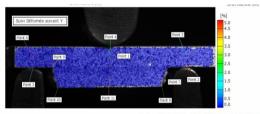
Mechanical bonding

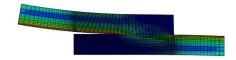

Interface materials


Laser treatments

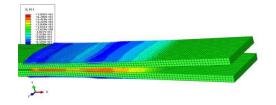

Stress calculation methodologies

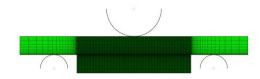
Elementary properties characterization



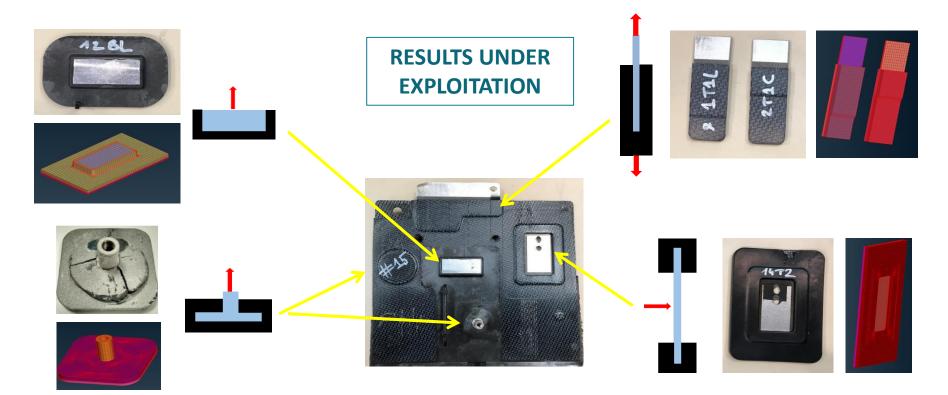


Laboratoire Cetim Saint-Etienne 24/01/2019



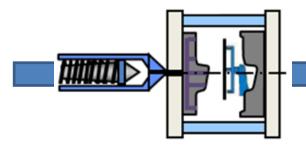

Laboratoire Cetim Saint-Etienne 22/01/2019

Modelling



Application to representative inserts

Mechanical results close to results obtain with adhesive bonding



Some of our works on composite materials

Process

 Net-shape composite part by stamping and overmolding

• Low cast carbon fiber

Assembly

 Test of bonding technologies

