

Understanding Mechanical Properties of Castable alloy A205 by modelling and experiments

Projects EXTREME TRIPLE A • Ceena Joseph

GKN Aerospace AB

LIGHTer

Swedish national arena for lightweight innovations

Export Control

This document contains technical data not subject to Council Regulation (EC) No 428/2009 and its amendments.

Export Classification: Not Subject to Regulations (NSR)

- Low density (Potential weight reduction)
- Cheaper manufacturing costs

Aluminium vs Titanium

Alloys	Density (g cm ⁻³)	Yield strength (MPa)	Operating temperature (°C)
Al alloys	2.7	25 - 600	150 - 250
Ti alloys	4.5	170 - 1280	400 - 600

"World's strongest Aluminium casting"

- Promising qualities
 - High tensile strength
 - Good fatigue life
 - Good elevated temperature properties
 - Castablility

Chemical composition:

Elements	Al	Cu	(Ti)	(B)	Ag	Mg	Fe	Si	Other elements
Weight %	93.4	4.6	3.42	1.4	0.75	0.26	0.04	0.05	0.085

Phases present in A205

- Aluminium(α)
 - Matrix phase
- CuAl₂
 - Precipitation strengthening by Heat treatment
- Al₃Ti
 - Grain nucleant
- TiB₂
 - Grain refiner

Elements	Al	Cu	(Ti)	(B)	Ag	Mg
Weight %	93.4	4.6	3.42	1.4	0.75	0.26

Dislocation-Particle interaction

Phases present in A205

- Aluminium(α)
 - Matrix phase
- CuAl₂
 - Precipitation strengthening by Heat treatment

Microstructure of A205

6

Results: Al₃Ti particles in the Microstructure

>

1. Heat treatment

Effect of aging temperature and time on hardness and microstructure

4. Property prediction

Objectives

Applicability of ThermoCalc–Prisma; Aging time optimization tool; LM-Parameter for strength prediction after thermal exposure

2. Thermal exposure

Effect on tensile properties with fractography

3. LCF life

Properties at elevated temperatures and effect of aging time with fractography

Proprietary and confidential restrictions on title slide apply throughout this presentation

Objective

1. Heat treatment

• Effect of aging temperature and time on hardness and microstructure

Results: Solution Treatment

• Solid solution strengthening over solutionizing

Before solutionizing

Results: Effect of Aging parameters

- Aging temperature
 → Time to reach peak hardness
 >5 HV
- Relaxation slightly increases the peak hardness reached(1-5 HV)
- 16 hours at 170°C

• No noticeable effect on microstructure

Proprietary and confidential restrictions on title slide apply throughout this presentation

13

Objective

- 2. Thermal exposure
- Effect on tensile properties with fractography

- Tensile properties analysed
 - Ultimate tensile strength(UTS)
 - Yield strength(YS)
 - Elongation to failure(%)
- Thermal exposure
- Testing temperature
 - 100°C to 250°C
- > Starting material
 - T7 heat-treated
 - Grain size number: 3
 - Hardness: 160 HV

Microstructure of starting material

Thermal exposure conditions

		Time			
srature	150°C	100 h	1000 h		
Tempe	200°C	100 h	1000 h		

Results: Fractography

Thermal exposure at 150°C

Intergranular crack propagation

Microvoid coalescence

Crack propagation before and after prolonged exposure at 150°*C*

Results: Thermal exposure at 200°C

• Reduction in yield strength(-123 MPa) and ultimate tensile strength(-177 MPa) over time

- Significant increase in elongation
- Aggressive coarsening of CuAl₂ precipitates

After T7 treatment

200°C; 100 h

17

*Coarsening of CuAl*₂*precipitates*

• Prolonged exposure at 200°C

- Intergranular crack propagation with increased signs of deformation
- Mixed with MVC zones

Results: Effect on Tensile properties with Temperature

Results: Causes for scatter in properties

Casting defects

100-300 microns

Oxide inclusions

10.2

Wt%

76.9

10.32

20

3.97

Ti

Proprietary and confidential restrictions on title slide apply throughout this presentation

21

Objective

3. LCF

• Properties at elevated temperatures and effect of aging time with fractography

- Starting material
 - 3 different batches(A, B and C)
- All batches were tested at different strain ranges

Microstructure	Grain size number	Condition
Batch A	6.5	Solutionized; Aged to 6 h and 10 h
Batch B	4	Solutionized; Aged to 8 h and 12 h
Batch C	2.5	Solutionized; Aged to 16 h(complete T7 treatment)

Used for elevated temperature testing

LCF life(N_f) of Batches – A, B and C of A205 tested at different strain ranges after different aging times(coloured as shown in legend). The clustered data points in (a) corresponding to test strain ranges above 0.3% are expanded in (b) [Y-axis has been removed for confidentiality purposes]

Results: Fractography

Irrespective of testing and aging conditions

- Clear initiations
- Faceted crack growth
 - Region II crack propagation zone
 - Transgranular
- Overstress region
 - Mostly intergranular and MVC

Faceted crack growth

Results: Crack initiators

Oxide inclusions: 100 microns to 1 mm

Porosity: 100 to 300 microns

Element	о	Cu	AI	Ti	Mg	
Wt%	5.95	3.07	47.49	43.49	-	
	1.77	6.49	70.13	21.62	-	
	2.33	4.44	70.51	22.72	-	
	8.71	2.85	53.5	30.9	4.03	

EDS analysis

25

Proprietary and confidential restrictions on title slide apply throughout this presentation

26

Objective

4. Property prediction	Strength after prolonged thermal exposures; Aging time optimization tool; LM- Parameter for strength prediction after thermal exposure	
------------------------	---	--

Calibrating PRISMA using Experimental values

 Resolution of FEG SEM(10 nm) is insufficient for CuAl₂ analysis

Expected resolution(TEM):

 θ ' and Ω precipitates in an Al-4Cu-0.3Mg-0.4Ag (wt. %) alloy after solutionizing and aging at 250°C for 10 h(1)

T7 treatment

150°C; 100 h

150°C; 1000 h

200°C; 1000 h

SEM analysis: Evolution of $CuAl_2$ precipitates during thermal exposures

• Effect of aging times and temperature

• Increasing aging temperature brings down the time to reach peak hardness

• Effect of thermal exposure

- Prolonged exposures at 150°C and 200°C adversely affects the strength
- LCF life
 - Life depends on the size of defects at or under the surface
 - Casting quality has to be improved to prevent defects
 - Demonstrator in A205

• Thanks for your attention !

• Team @GKN

Anders Sjunnesson, Bengt Pettersson, Thomas Kruslind, Ceena Joseph Masters student : Monish Rajkumar