

Design Process for Composite Ships

Måns Håkansson

Composite Specialist, Saab Kockums

LIGHTer | Swedish national arena for lightweight innovations

Background

- Måns Håkansson •
- Employed At Karlskronavarvet since 1998
- Composite materials all the time
- Lic. Eng. at Chalmers 2015 ۲

Minesweeper "Viksten" (1974)

Composites for commercial ships

MÅNS HÅKANSSON

Department of Marine Technology CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2015

Composite Materials Light but Expensive

- Increase in fuel costs
- Lighter vessels due to environmental concern
- Life cycle cost analysis necessary
 - Higher acquisition cost and risk balanced by lower operational cost
- Systems engineering and structural design
 - Several loops in the design spiral
 - Tools and knowledge
- "New material"
 - Composite ships must excel in cost comparisons with steel or aluminium

Investigations

- Panel Optimization
- Longitudinal Bending
- Miscellaneous Requirements
 - Fire, noise and production aspects
- Ship's Superstructure
- Life-cycle Cost Analysis (LCCA)

Panel Optimization

Input

PARAMETERS	NUMBER OF VALUES	VALUES
Material	2	Carbon fibre; glass fibre
Structure	2	Single-skin; sandwich
Ship length	3	10 m; 50 m; 100 m
Structural part	6	See figure
Panel size	4	1×1; 2×2; 4×4; 8×8 m
Design pressure	10	Evenly distributed in specific intervals
Objective function	2	Cost; weight

Output

3000 set of data Weight, Cost Material, geometry

Calculations according to DNV Rules

Results: Panel Optimization

Complex Design Superstructure

- Large, open spaces panel size: 8x8 m
- Fire requirements: fire insulations according to rules
- Resonance frequency > 11 Hz
- Defined free deck height: 2.2 m
- Equipment's mass: 80 kg/m²
- Objective functions and examples of design requirements:
 - Weight and "ship stability"
- Input:
 - Results from panel optimizations
- Output:
 - Comparison of objective functions for steel, aluminium, CFRP and GFRP

Superstructure

Panel without girders

- Higher weight
- Higher material cost
- Lower CG
- Less fire insulation

Panel with girders

Superstructure

	MATERIAL/STRUCTURE						
	Steel	AI	CFRP	GRP	CFRP	GRP	
Objective function	-	-	Weight	Weight	CG	CG	
Structural weight [kg]	6340	3318	2028	3055	2596	3688	
Total weight [kg]	12207	9410	8508	9718	8681	9805	
No of girders	4	4	3	3	0	0	
Deck height [mm]	2654	2756	3046	3569	2656	2780	
hCG [mm]	2564	2829	3147	3437	2813	2842	
Moment [tonm]	31.3	26.6	26.8	33.6	24.4	27.9	
Frequency [Hz]	11.2	11.3	11.2	11.1	11.3	11.1	

Production Aspects

Location [m]	Design pressure [kPa]	Panel size [mxm]	
AP-2	50	2x2	
2-4	60	2x2	
4-6	70	2x2	
6-8	80	2x2	
8-10	90	2x2	
10-12	100	2x2	
12-14	90	2x2	
14-16	70	1x1	
16-18	70	1x1	
18-FP	80	1x1	

20 m ship Carbon Fibre Sandwich

Production Aspects

Location	Core thickness [mm]	Laminate thickness [mm]	Core type	Weight [kg/m²]	Cost [€/m²]
AP-2	29	1.9	PVC130	16.7	127
2-4	35	1.9	PVC130	18.3	150
4-6	41	1.9	PVC130	19.6	167
6-8	47	1.9	PVC130	20.9	187
8-10	53	1.9	PVC130	22.6	205
10-12	59	1.9	PVC130	23.9	224
12-14	53	1.9	PVC130	22.6	205
14-16	18	2.0	PVC200	12.5	93
16-18	18	2.0	PVC200	12.5	93
18-FP	23	1.9	PVC200	13.1	112

Total weight: 1308 kg

1 type of core and 1 laminate thickness \rightarrow +2 kg 2 core thicknesses \rightarrow +62 kg 1 core thickness \rightarrow +210 kg

Simplified LCCA

- Fuel life cost dominates
 - High speed
 - Many operating hours
- Impact of displacement changes
 - Resistance speed displacement diagrams
 - Statement: "2% fuel save from 1% weight reduct
- Cost/Weight Relationship

Thank You!

