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Objective of my PhD work

Carried out at Chalmers University of Technology

To reduce the weight of composite marine structures,
so as to make them more economically attractive.



Considered Cost Reduction Approaches
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Considered Cost Reduction Approaches
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Considered Cost Reduction Approaches
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It can be decreased, but how does it
compare to the other two opportunities
for weight reduction?
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conservative
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Improvement
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Methodology
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Material: carbon/epoxy and glass/epoxy prepregs.

Load case: unidirectional tensile monotonic loading.

Type of laminate: cross-ply.
Mode of degradation: only matrix cracking.

Effect of degradation: only stiffness degradation.

Undesirable ultimate limit states:

Failure due to Fibre Fracture
Failure due to Fibre Fracture or Matrix Cracking

Operational Limit

Uniaxial tensile stress at which the probability of a
ultimate limit state is equal or smaller than the value
deemed as acceptable.
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[90,/0,.]5
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HYPOTHESIS
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Effects of matrix

Resu Its cracks other than loss

of stiffness

Probabilistic
modelling of material
strength

Definition of failure
due to matrix
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are uncertain about!
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Can higher operational limits be motivated for composite marine
structures through reliability analyses?

Maybe.

It could not be done for our studied cases...

The main takeaway is that reliability analyses of composite materials
are very sensitive to choices we are really uncertain of.
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Material
Characterization
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Measure twice. Cut
once.

Value of the thing|bgingemBasult of the
measured  grror measurement
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Composite
laminate specimen
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Material property measurement results
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Dimensions of
the structure

WEIGHT

Sample of
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results — Analytical Analyses

— Numerical Analyses
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Statistical
Analysis

‘ Design value of a
material property
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Hypothesis

Improved material characterization
methods can reduce measurement errors,
resulting in higher design values.
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Measurement Error

Error induced by a large
number of factors

Error induced by a single factor:
the strain measurement method
used for textile composites

Strain measurement error

23



global )

Strain measurement error
for textile composites
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Local surface strain measurements are
not a good proxy for the laminate strain
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' Strain measurement error
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Can higher design values be obtained through improved material
characterization methods?

Yes.

Use strain measuring devices with very large gauge sizes...

... or a Digital Image Correlation system.
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Structural Design
Exploration



He T

Waterline length (L) 34.3m

Breadth of the pontoons (b) 2.83m
top view
Dp
I S !
side view front view

31



unidirectional laminate flange

stiffener

panel
Divinycell core

quasi-isotropic laminate skins
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Modifying the design
constraints

Searching for better
structure designs

Operational
Limit

Response

Which is a better approach for reducing the
structure’s weight?



Approximate range of structure
design weights that can be found
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Approximate range of structure
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design weights that can be found for better structure

designs
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Weight of the designs meeting
the Design Constraints
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How does improving the design of a structure compare to the two other
opportunities as an approach for weight reduction?

Our results indicate that improving the design of a structure has
the largest potential...

... but this conclusion is based on one simple study case.

More and better study cases are necessary to strengthen this conclusion.
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FINAL CONCLUSIONS

OBJECTIVE
To reduce the weight of composite marine structures,
so as to make them more economically attractive

Was it achieved?

Through higher operational limits estimated with reliability analyses...
No...

Through more accurate mechanical properties determined with improved
material characterization methods ...

Yes.

Our structural design exploration analysis indicates that improving the design
of a structure has the largest potential for weight reduction in large composite
marine structures.

40



Acknowledgements

This work was partially funded by:
Chalmers Areas of Advance Material Science
Swedish Maritime Competence Centre: Lighthouse
EU project BESST: Breakthrough in European Ship and
Shipbuilding Technologies



Further develop the work presented in the Structural Design Exploration
section to publish it as a journal paper.

Compare the results of structural optimization algorithms coupled to
numerical and analytical structural analyses.
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Test case

longitudinal location is
adjustable to get zero-trim
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Composite Marine Structures
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Operational Limits of glass/epoxy cross-ply laminates
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Why is cost reduction important?

Acquisition Total operational cost of X years Disposal
cost of operation cost
—— l A

Metal

Composite L L '

Premium Life-cycle cost

T

Premium payback time is critical!
Economically unattractive if it is too long!

—
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Payback time of tWe premium I Reduce

Increase in revenue due to
the composite

Acquisition cost

Payload increase
® Fuel consumption reduction

v

Weight of the
Reduce
composite structure used

Amount of,composite

The structure must be as lightweight as possible!
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X-ray showing the damage in a
[+25/90,]s carbon/epoxy
prepreg laminate caused by a
tensile load

©Wang, 1984

X-ray showing the number of matrix cracks in a [90/0/90];
glass/epoxy prepreg laminate as a tensile load increases
©Manders et al., 1983

Load increase

One aspect of matrix cracking and delamination is

degrades the stiffness of the laminate

E,> Ed -



