

FALCON A multidisciplinary effort towards future lightweight infrastructure using FRP

Reza Haghani (Alann Andre, Abbas Khayyami, Erik Olsson)

Docent, Chalmers University of Technology

CONTENT

Composite materials in construction

FRP-bridges – examples

Onging in Sweden

Concluding remarks

HISTORY OF COMPOSITE MATERIALS

FIBER REINFORCED POLYMER (FRP)

FiberMatrixCarbonPolyesterGlassVinylesterAramidEpoxyBasaltPolyurethane

Fiberline

2019-11-27

 $25 \,\mu m$

MODERN FRP COMPOSITES

LIGHT OURABLE STRONG VERSATILE

11/27/2019

FIELDS OF APPLICATIONS

FRP IN CONSTRUCTION

"THE MONSANTO HOUSE OF FUTURE" 1957-1967

APPLICATIONS IN CONSTRUCTION

APPLICATIONS IN CONSTRUCTION

FRP MARKET

-0

APPLICATION OF FRPS IN BRIDGE INFRASTRUCTURE

Increased knowledge and better calculation

Development of standards

Fästdon och förband i stålkonstruktioner. Handbok och kvalitetsrekommendationer Torsten Höglund och Bernt Johansson

Connection methods

Smithery

Welding

NEW MEASURES

Life cycle aspects

We cannot solve our problems with the same thinking we used when we created them

Albert Einstein

WHY FRPS ARE ATTRACTIVE IN INFRASTRUCTURE?

- Lightweight (easy to handle)
- Strong
- Industrialized manufacturing (i.e. quality control)
- Prefabrication
- Durability (i.e. non-corroding) → low maintenance
- Lower embodied energy and environmental impact (material and transportation)
- Workers' safety (lightweight)
- More expensive
- Complex design

CHALMERS UNIVERSITY OF TECHNOLOGY

Life Cycle Cost analysis

Life Cycle Assessment

-0

USER COSTS

Can greatly influence the project's economy

LCA – ROAD BRIDGE IN DENMARK

For a 12 m long road bridge Four different bridge concepts Service life: 100 years

MAINTENANCE COSTS

Footbridge- Okinawa, Japan

MOVABLE BRIDGES

VESTERELVENS BRO – FREDRIKSSTAD 2003

Span: 2 x 28 m Bascule eeight: 20 t (FRP 9 t) Design: Griff kommunikasjon AS Maufacturing: Marine Composites AS, Arendal

FORYD HARBOUR - NORTH WALES 2013

Pedestrian bridge completely in FRP Span: 2 x 30 m Design: Ramböll & Dawnus Manufacturing: AM Structures Cost: 4.3 m£

-0

-

TRAFFIC BRIDGE OOSTERWOLDE, NL

Dimensions: 12,5 x 12,5m Traffic class: 600 kN year: 2010

BRIDGE

30,000 veh/day FRP deck – ZellComp Bascule length: 42,6 m width: 14 m

AND DE DE DE DE

2019-11-27

GRASSHOPPER BRIDGE 2011 - DENMARK

FRP däck – Fiberline, DK Span: 25 m Width: 5 m Weight: GFRP-deck 13 t

FRP deck – Fiberline, DK Span: 27 m Width: 5 m Weight: 60 t Design: Knippers Helbig AE

ASTURIAS BRIDGE, SPAIN 2004

Span: 10 + 13 + 13 + 10 m Width: 5.6 m Weight: 4.6 t / girder Design & Production: ACCIONA 1-2

THE REPORT OF

ASTURIAS BRIDGE, SPAIN 2004

3 U-shaped carbon fiber girders with stay-in-place GFRP formwork

The bridge was mounted in 3 hours

MOUNT PLEASANT ROAD BRIDGE – UK 2006

FRP deck on steel girders Span: 2 x 25,7 m Width: 5,6 m Weight: 103 t (GFRP 18 t)

10

-0

•

Pris: 1600 EUR/m²

APPLICATIONS IN SWEDEN

- Started at Chalmers in 2010 in collaboration with Swedish Transport Administration
- Continued by EU PANTURA (2011-2014) project
- Followed by FALCON (Future Advanced Lightweight CONstruction) project funded by Vinnvoa LIGHTer program (2016-2019)

REFURBISHMENT OF A BASCULE BRIDGE IN MALMÖ BY CHANGING THE EXISTING DECK TO FRP (2016)

Chalmers University of Technology

20

- The deck was in very bad shape
- The bridge has 9 longitudinal steel girders
- The width of the deck is 8.9m (divided into two lanes). Each lane has dimensions of 4.44x32.86 m

-0

Glass Fibre Fabric box plate: Flanges, connected by webs Flanges 0°/ ±45° fabric, web 90°/±45° fabric

•

ai.

•

Photo Per Andersson

EKAJ 24

Total cost of 4.5 MSEK, equivalent to ca.15000 SEK/m2Photo Per Andersson

THE FIRST WHOLE FRP BRIDGE IN SWEDEN (2019)- NEPTUNI

Photo Abbas Khayyami

The bridge weight was ca. 9 tons compared to a 70 ton concrete

Photo Abbas Khayyami

REFURBISHMENT OF UNIVERSITY BRIDGE IN MALMÖ (2017)

RESUND

THE

Photo Abbas Khayyami

Trail and in the

CONTRACTOR OFF

-0

Huge choice of material & endless possibilities for material combinations

+ bespoke mechncial properties ..

+ optimal material utilization & construction

- + possibilitie for creativ solutions
- Complex material (calcuations)
- Harder to standardize (comp. To steel and concrete)
- Hard to compare solutions / design

Many choose to buy "Products" \rightarrow

material and production secrets

Market and Organization

- FRP industry is not familiar with bridge market
- Clients & structural engineers not familiar with the material
- Yet, limited experince with managing innovation
- Limited market volume
- Few actors on the market, with limited experience

Clients interest and engagement is essential

Competence development

- Education & training
- Knowledge dissemination & experience feedback

Research

- Design rules & simplified calculation models
- Long term behavior, degradation over time .. A bridge lasts 80 years!
- Repair- and strengthening methods
- Quality assurance, inspection methods, NDT
- Measurements and monitoring
- Hybrid solutions .. Many advantages and many challenges
- Connections

Iron Bridge, **1779** Sveriges första järnbro över Götakanal, **1813**

INSPERATION

Bridge crossing Thames - Concept: Optima projects, UK

CHALMERS

UNIVERSITY OF TECHNOLOGY